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1 Introduction

Unemployment is a ubiquitous feature of modern economies. Yet in a dynamic general

equilibrium setting, unemployment does not emerge unless certain frictions, such as efficiency

wages (e.g., Danthine and Donaldson, 1990; Gomme, 1999) or search externalities (e.g., Merz,

1995; Andolfatto, 1996), are built into the labor market. A frequent assumption underlying

these models is that workers perfectly insure each other against variations in labor income

resulting from job loss. The rationale is that insurance contracts make the intertemporal

decisions independent of one’s employment status, thereby circumventing complications that

arise from heterogeneous work histories. Restoring homogeneity to the model, the argument

goes, allows the researcher to focus on the role of labor market imperfections in accounting

for unemployment and other important aspects of the data.

Notwithstanding the desire to highlight the labor market, the assumption of complete

risk sharing has two potential drawbacks that have received little attention in the macroe-

conomic literature. First, there is no compelling evidence that points to full insurance as

an empirically realistic premise. To the contrary, many studies using micro-level data show

that unemployment spells cause a nontrivial decline in one’s consumption spending (e.g.,

Dynarski and Sheffrin, 1987; Cochrane, 1991; Dynarski and Gruber, 1997; Gruber, 1997;

Stephens, 2001; Stephens, 2004). At the very least it would be useful to have a business

cycle model that is more consistent with our understanding of the risk-sharing behavior of

consumers. Second, the assumption of full insurance is appropriate provided its effect on the

conclusions of the model are small. It is difficult to determine whether full insurance meets

this standard in the absence of a model that embodies alternative insurance possibilities.

In light of these issues this paper estimates an equilibrium model of unemployment that

incorporates a menu of different risk-sharing options, and by doing so, departs from the

widespread practice of considering only the case of full insurance. More specifically, this
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paper asks whether the assumption of full insurance is sufficient to explain most of the key

properties of the US business cycle, or whether limiting the insurance opportunities substan-

tially improves the fit of the model. To that end, I construct a dynamic sticky-price model

that gives prominence to a frictional labor market along the lines of Alexopoulos (2004).

The central idea is that workers face a temptation to shirk that arises from firms’ inability

to monitor effort. Consequently, employers design a payment mechanism that discourages

shirking. The outcome corresponds to an efficiency wage that exceeds the market-clearing

level and makes unemployment an equilibrium feature of the economy.

Unemployment insurance enters the model by means of an income-pooling device that

permits, but does not force, agents to fully insure each other against employment risk.

Workers contribute a portion of their earnings into a fund that is redistributed equally to

the unemployed. Individual contributions are governed by an exogenous function that defines

the scope of insurance coverage. The specification used in the model can accommodate any

one of a continuum of different arrangements, including both partial and full insurance cases.1

The paper proceeds by estimating the parameters of the model using a maximum-

likelihood procedure with quarterly US data on per capita consumption, investment, the

real wage, inflation, and the nominal interest rate. Two versions of the model are estimated

that differ in their treatment of risk sharing. One leaves the insurance parameter uncon-

strained, allowing the data to ascertain the extent of risk sharing among agents. The second

restricts this parameter prior to estimation to guarantee full insurance in equilibrium. Like-

lihood ratio tests provide the basis for a formal comparison of fit between the restricted, full

insurance version and the unrestricted alternative that allows for partial insurance.

Econometric results indicate that the data prefer a model in which agents are only par-

tially insured. Point estimates of the insurance parameter imply that individual consumption

1I avoid computational problems related to consumption heterogeneity by using a family construct that
makes all decisions regarding asset accumulation (e.g., Alexopoulos, 2004; Danthine and Kurmann, 2004).
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is about 38 percent less for unemployed members. A likelihood ratio test of the null hypoth-

esis of full insurance is easily rejected at standard significance levels.

Although useful for comparing model fit, likelihood ratio tests are not very informative

about precisely which features of the data are better explained by the inclusion of partial

insurance. Imposing the full insurance restriction causes all of the parameters to deviate

from their unconstrained estimates, so any discernable shift in empirical performance is the

result of changes in all of the parameter values, not just in the degree of risk sharing. The

log-likelihood criterion alone is, therefore, not sufficient to identify the specific contribution

of the partial insurance mechanism. To evaluate the role of insurance coverage independently

from other features of the model, I conduct various simulations of the unconstrained model

with partial insurance and compare the findings to those from an identical version with

full insurance imposed after estimation. First, impulse response functions show that partial

insurance, by altering the pattern of real wage dynamics, enables key structural shocks to

have a bigger and more persistent effect on measures of real economic activity. Second,

evidence from a broad survey of moments confirms that limited risk sharing helps match

the low relative volatility of the real wage and the small correlation between wages and

output observed in the data. It also boosts the degree of wage persistence, as reflected

in the correlations between current and lagged real wages. Third, variance decompositions

reveal that the unrestricted model with partial insurance is more consistent with the belief

that monetary shocks have a modest impact on the business cycle, while investment-specific

technology shocks play a dominant role in driving economic fluctuations.

1.1 Related Literature

There are a few recent papers showing that the performance of business cycle models can be

improved in certain areas by restricting the insurance opportunities available to agents. Using

a GMM procedure, Alexopoulos (2004) estimates a flexible-price model with unobservable

3



effort driven by technology and fiscal shocks. Two distinct insurance arrangements are

examined by imposing alternative calibrations on the wage-pooling equation. The first is

the case of full insurance, and the second is a partial insurance plan whereby consumption

declines by about 22 percent when unemployed. The results indicate that partial insurance

helps amplify and propagate the responses to both shocks while improving the volatility and

co-movement of real wages and employment. In a related paper Alexopoulos (2007) shows

that partial insurance also generates a more sluggish price response to monetary shocks from

the perspective of a limited participation model.

Aside from the inclusion of sticky prices, this paper extends Alexopoulos’ research by

conducting statistical inference on the insurance component of the model. Alexopoulos bases

her comparison of insurance schemes on an assortment of key second moments, leaving open

the question of whether partial insurance actually improves the fit of the model. I impose

greater econometric discipline by estimating the degree of risk sharing in an environment

that nests full insurance as a special case. The maximum-likelihood strategy employed here

enables the researcher to formally test the null hypothesis of complete risk sharing against

the alternative of partial insurance.

Givens (2008) develops a monetary business cycle model that combines sticky prices

with unobservable labor effort. Similar to the present study, his model features an insurance

mechanism that allows for varying degrees of risk sharing. Through dynamic simulations,

Givens finds that limiting the scope of insurance coverage leads to greater persistence in the

path of output after a monetary shock and more sluggishness in the response of inflation.

By focusing on maximum likelihood estimation, this paper is different from Givens’ study,

the results of which are predicated on a less rigorous calibration of the parameters. In the

course of taking the model to the data, several features are added that have been shown

to enrich the dynamics of this class of models. These include capital accumulation with

adjustment costs, habit formation in consumption, dynamic price indexation, and an interest
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rate rule for monetary policy. The model is also augmented by a richer set of disturbances,

namely, neutral and investment-specific technology shocks, a preference shock, a cost-push

shock, a monetary shock, and a labor supply shock affecting the hours margin. The inclusion

of these elements is not meant to be an extension of Givens (2008) by and of itself, but rather a

necessary step to implementing the econometric procedure described above. Simpler models

that lack these ingredients often produce highly misspecified representations of the data

generating process, which can lead to difficulties in interpreting the estimation results.2

2 The Economic Model

The model blends sticky prices with an efficiency-wage theory of the labor market based

on unobservable effort. It is populated by five types of agents: a representative family, a

continuum of family members, a competitive finished goods-producing firm, a continuum of

intermediate goods-producing firms, and a government.

2.1 Families

The representative family has a continuum of members of measure one. Randomly selected

Nt members receive job offers every period, while the remaining 1 − Nt are unemployed.

Because unemployment generates income dispersion, I follow Alexopoulos (2004) in assuming

that the family accumulates assets over time. Denying individuals access to financial markets

conserves the representative agent framework in an economy with positive unemployment.

The family brings Kt units of capital and Rt−1Bt−1 units of nominal bond wealth into

period t, where Rt is the gross nominal interest rate between t and t+ 1 on bond purchases

Bt. It then leases its capital stock to a [0, 1] continuum of intermediate good firms at a com-

petitive rental rate rkt . At the end of the period it receives a flow of real dividend payments

2See Del Negro, Schorfheide, Smets, and Wouters (2007) for a discussion.
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∫ 1

0
Dt(i)di from ownership of those firms. Together with bond and dividend earnings, returns

from capital are used to purchase a portfolio of new bonds Bt, investment goods It, and a

stream of consumption benefits Cf
t for the members. The family distributes consumption

equally before jobs commence, making Cf
t a lower bound on the amount of consumption

available to members who face employment risk. The budget constraint is then given by

Cf
t + It +

Bt

Pt

≤ rktKt +
Rt−1Bt−1

Pt

+

∫ 1

0

Dt(i)di, (1)

where Pt denotes the price of the finished good that can be either consumed or invested.

The law of motion for the family’s capital stock is given by

Kt+1 = (1− δ)Kt −
ϕ

2

(
It
Kt

− δ

)2

Kt + atIt, (2)

where the depreciation rate δ ∈ (0, 1) and ϕ
2
(·)2 is an adjustment cost function with ϕ ≥ 0.

In the spirit of Greenwood, Hercowitz, and Huffman (1988), the stochastic variable at is an

investment-specific technology shock that follows the autoregressive process

log at = ρa log at−1 + εa,t,

where 0 < ρa < 1 and εa,t ∼ N(0, σ2
a).

2.1.1 Family Members

Although members do not participate in asset markets, they can purchase additional con-

sumption above the family minimum using wage income. Intermediate good firms offer

one-period job contracts that specify an effort level et and work hours ht in exchange for an

hourly real wage wt.
3 The inability to perfectly monitor effort, however, invites employed

3I drop firm-specific notation when discussing the characteristics of employment contracts. Because they
share a common production technology, contracts will not vary across firms.
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members to shirk. Following Alexopoulos (2004), workers receive a fraction s of their total

wages upon entry, while the final payment of (1− s)htwt is awarded at the end of the period

if shirking goes undetected. Shirking is detected with exogenous probability d. The shift

length ht is modeled as an exogenous stochastic process: ht = hεh,t, where h is the average

length of work hours and log(εh,t) ∼ N(0, σ2
h)

4. Adding shocks to hours worked permits total

hours to vary along the intensive margin through exogenous changes in ht and along the

extensive margin through endogenous fluctuations in Nt.
5

The government coordinates a fully funded insurance program to spread the risk associ-

ated with unemployment. Employees pay an insurance fee Ft that is pooled into one large

fund totaling NtFt and distributed equally to unemployed members. Those who reject job

offers are ineligible to receive unemployment benefits, ensuring that all offers are accepted

and that unemployment will be strictly involuntary.6 It follows that consumption will de-

pend on one’s employment status as well as the outcome of the firm’s monitoring efforts. If

an individual finds employment and is not detected shirking, his date-t consumption will be

Ce
t = Cf

t + htwt − Ft. (3)

If caught shirking, his consumption will be

Cs
t = Cf

t + shtwt − Ft (4)

after forfeiting the end-of-period bonus. If unemployed, his date-t consumption will be the

4As explained in detail in section 3, exogenous variation in hours worked prevents the forecast error
covariance matrix of the observable variables from being rank-deficient. Earlier presentations of the model
treat work hours as a constant (e.g., Alexopoulos, 2004; Alexopoulos, 2007; Givens, 2008).

5Most of the variation in US total hours occurs along the extensive margin (e.g., King and Rebelo, 1999).
6Equilibrium outcomes would not change if the family, instead of the government, was responsible for

administering unemployment benefits.
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sum of family-purchased consumption and an equal share of the insurance fund given by

Cu
t = Cf

t +
NtFt

1−Nt

. (5)

The insurance fee is characterized by an exogenous formula that encompasses a menu of

different risk-sharing possibilities. Specifically,

Ft = σ(1−Nt)htwt, (6)

where σ ∈ [0, 1] quantifies the scope of the insurance program. The government can fully

insure workers by setting σ = 1 since Ce
t = Cu

t in this case. A partial insurance arrangement

can be obtained by setting 0 < σ < 1, guaranteeing that Cf
t < Cu

t < Ce
t in equilibrium.7

The utility function of a family member j who consumes Cj
t units of the finished good is

U(Cj
t − bCt−1, et) = log(Cj

t − bCt−1) + θ log(T − ϑt[htet + ξ]), (7)

where θ ≥ 0, T is the time endowment, and ϑt is an indicator function equal to one if

employed and providing effort. The parameter ξ measures fixed costs of exerting nonzero

effort. As in Smets andWouters (2003), consumption Cj
t appears relative to an external habit

variable bCt−1. The parameter b ∈ [0, 1] determines the degree of habit formation, where

the reference variable corresponds to last period’s average level of consumption Ct−1.
8 An

alternative way to model consumption habits is to treat lagged individual consumption Cj
t−1

as an internal reference variable (e.g., Fuhrer, 2000; Christiano, Eichenbaum, and Evans,

7Here I assume that the government observes which members receive job offers, and it withholds un-
employment compensation from those who reject offers. As σ rises, agents face an incentive to lie about
receiving offers because they can reap large unemployment benefits while avoiding the disutility from work.
Allowing the government to observe employment draws ensures that all job offers are accepted, eliminat-
ing the incentive for members to lie. Footnote 14 contains a brief discussion about the precise amount of
insurance at which workers would be enticed to lie in the absence of this kind of government oversight.

8Date-t average consumption in the family is given by Ct = (Nt − dNs
t )C

e
t + dNs

t C
s
t +(1−Nt)C

u
t , where

Ns
t denotes the fraction of members who shirk.
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2005). It turns out that internal habit formation is not feasible in the present context for

reasons which I discuss below. Nevertheless, the distinction between external and internal

habits may not have much empirical significance because Dennis (2009) shows that the two

approaches display very similar business cycle properties in a new-Keynesian model.9

Because effort is imperfectly observable, workers encounter a moral hazard problem after

accepting job offers. Specifically, they must decide whether supplying the mandatory effort

is optimal given knowledge of the firm’s exogenous monitoring technology. Alexopoulos

(2006a) demonstrates that employees will abide by the terms of the contract only if the

resultant utility exceeds the expected utility from shirking. Workers will otherwise choose to

elicit zero effort because any positive effort reduces utility and the wage forfeiture facing a

detected shirker does not depend on the size of one’s effort deficit. This means that workers

will satisfy the conditions of employment provided they are incentive compatible, that is, if

U(Ce
t − bCt−1, et) ≥ dU(Cs

t − bCt−1, 0) + (1− d)U(Ce
t − bCt−1, 0). (8)

It is clear from (8) that the precise definition of the habit variable will have important

consequences for equilibrium real wages. Under an external habit setup, all non-shirking

employees have the same level of utility, implying that firms can satisfy each worker’s in-

centive compatibility constraint with a common wage. When individual consumption is

the reference variable–that is, when consumption habits are internalized by each member–

current utility depends on the realization of random employment draws in earlier periods. If

those outcomes are observable, firms seeking to discourage all shirking at the lowest possible

cost will offer different wages to employees according to their idiosyncratic work histories.10

9Section 6 examines the importance of habit formation by estimating a restricted version of the model
that sets b = 0. The results show that dropping consumption habits weakens model fit but does not call into
question the dominance of partial insurance vis-à-vis full insurance.

10This is only true in the partial insurance case. With full insurance family members consume equal
quantities, implying that all individuals who receive job offers have the same utility.
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Assuming that consumption habits are external keeps the model analytically tractable and

avoids complications arising from equilibrium wage dispersion.

2.1.2 The Representative Family’s Problem

The family’s objective is to maximize the present value of the average utility of its members.

The next section establishes that job contracts are always incentive compatible, so workers

will never shirk in equilibrium. Accordingly, family preferences take the form

E0

∞∑
t=0

βtgt [NtU(Ce
t − bCt−1, et) + (1−Nt)U(Cu

t − bCt−1, 0)] , (9)

where β ∈ (0, 1) is the discount factor. Sequences {Cf
t , Bt, It, Kt+1}∞t=0 are chosen to maxi-

mize (9) subject to (1), (2), (3), and (5). The family treats Nt parametrically during opti-

mization because it does not believe that its actions affect employment outcomes.11 Finally,

the stochastic variable gt is a shock affecting the time rate of preference and is governed by

log gt = ρg log gt−1 + εg,t,

where 0 < ρg < 1 and εg,t ∼ N(0, σ2
g). The preference shock appears in the Euler equation

for Cf
t linking current and expected future average marginal utility of consumption to the

real interest rate. McCallum and Nelson (1999) argue that shocks like this one are similar

to shocks originating in the goods market in traditional Keynesian IS-LM models.

11Divorcing individuals from savings decisions raises another issue about the treatment of habit formation.
From the members’ perspective, past average consumption is viewed as an external reference variable. With
the family managing assets, however, the impact of marginal changes to Cf

t on average consumption should
be internalized in the decision period.
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2.2 Firms

Firms are of two types. The first type produces identical finished goods sold to families in

competitive markets. The second type hires family members to produce intermediate goods

that are sold to finished goods-producing firms in monopolistically competitive markets.

2.2.1 Finished Good Firms

A perfectly competitive firm manufactures finished goods Yt by assembling a [0, 1] continuum

of intermediate goods indexed by i using the technology described by Kimball (1995)

∫ 1

0

G

(
Yt(i)

Yt

)
di = 1, (10)

where Yt(i) measures the quantity of good i. The function G is increasing and strictly

concave, with G(1) = 1. The Kimball formulation generalizes the popular Dixit-Stiglitz

aggregator by permitting the elasticity of demand for each good i to be increasing in its

relative price. This feature introduces a strategic complementarity in intermediate good

firms’ pricing decisions that helps the model achieve greater consistency with the micro-level

evidence on the frequency of price adjustments (e.g., Eichenbaum and Fisher, 2007).

The finished good firm chooses Yt and {Yt(i)}i∈[0,1] to maximize profits every period

subject to (10). This leads to a demand curve for good i of the form

Yt(i) = G′−1

[
Pt(i)

Pt

∫ 1

0

G′
(
Yt(i)

Yt

)
Yt(i)

Yt

di

]
Yt, (11)

where Pt(i) denotes the date-t price of Yt(i).
12 The marginal cost of producing a unit of the

finished good is Pt, which can be derived from the zero profit condition PtYt =
∫ 1

0
Pt(i)Yt(i)di.

12G′−1(·) denotes the inverse function of G′(·).
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2.2.2 Intermediate Good Firms

The production technology for intermediate goods takes the form

Yt(i) = ztkt(i)
α([nt(i)− ns

t(i)]et(i)ht)
1−α,

where the capital share α ∈ (0, 1). The variable zt is a neutral technology shock that follows

log zt = (1− ρz) log z + ρz log zt−1 + εz,t,

where 0 < ρz < 1, z > 0, and εz,t ∼ N(0, σ2
z). Inputs kt(i), nt(i), n

s
t(i), and et(i) represent

the date-t capital services, number of family members, number of shirkers, and effort levels

employed by firm i, respectively. Given the timing of wage payments and the fact that

shirkers produce no output, it is never profitable to hire workers who are inclined to shirk.

As a result, firms design labor contracts that elicit effort from all employees.

During period t, firms select {kt(i), nt(i), wt(i), et(i)} to minimize unit production costs

kt(i)r
k
t + nt(i)htwt(i) subject to ztkt(i)

α(nt(i)et(i)ht)
1−α ≥ 1 and the incentive compatibility

constraint (8). The latter constraint holds with equality because firms want to compensate

employees no more than what is minimally needed to induce effort. By substituting (3), (5),

and (7) into (8), effort can be expressed as a function of the real wage,

et(i) = e(wt(i)) =
T − ξ

ht

− T

ht

(
Cf

t + htwt(i)− Ft − bCt−1

Cf
t + shtwt(i)− Ft − bCt−1

)−d/θ

. (12)

Subject to (12), cost minimization yields the familiar Solow (1979) condition

wt(i)e
′(wt(i))

e(wt(i))
= 1, (13)
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which implies that firms select the real wage to minimize costs per unit of effort.13 The effi-

ciency wage satisfying (13) will generally exceed the wage that would prevail in a Walrasian

labor market with perfect monitoring. The result is positive unemployment in equilibrium.

After differentiating (12) with respect to the real wage, the Solow condition (13) implies

that (Ce
t − bCt−1)/(C

s
t − bCt−1) is fixed and depends only on the parameters s, T , ξ, and

d/θ. Specifically, one can show that this ratio satisfies

T

(
d

θ

)
(1− sC̃)(C̃ − 1) = (1− s)

[
(T − ξ)C̃1+d/θ − TC̃

]
, (14)

where C̃ ≡ (Ce
t − bCt−1)/(C

s
t − bCt−1). This result generalizes the findings of Alexopoulos

(2004) to account for the impact of habit formation on wage contracts.

Although firms negotiate wages every period, price contracts can last for several periods.

Using the Calvo (1983) formulation, a fraction 1−χ of randomly selected firms adjust prices

optimally in each period. The remaining χ firms reset prices according to a variant of the

dynamic indexing rule proposed by Christiano et al. (2005)

Pt(i) = exp(επ,t)πt−1Pt−1(i), (15)

where πt−1 is the inflation rate from dates t−2 to t−1. The stochastic term επ,t is a shock to

the indexation rule with distribution επ,t ∼ N(0, σ2
π). Casares (2007) shows that exogenous

variation in the indexation rule resembles, in equilibrium, a “cost-push” shock of the kind

emphasized by Clarida, Gaĺı, and Gertler (1999). Denote P̃t the price common to all firms

that reoptimize during period t. Firms choose P̃t to maximize the present value of profits

Et

∞∑
j=0

(χβ)j
(
λt+j/Pt+j

λt/Pt

)[
P̃t

Pt+j

(
j−1∏
k=0

exp(επ,t+k+1)πt+k

)
−mct+j

]
Pt+jYt+j(i), (16)

13Firms take the government insurance fee and the habit variable as given when making wage decisions.
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where mct is the real marginal cost of production and the term βj(λt+j/Pt+j)/(λt/Pt) mea-

sures the family’s date-t nominal value of additional profits acquired at date t+ j.

2.2.3 The No-Shirking Condition

The presence of unobservable effort means that the labor market can no longer be described

in Walrasian terms. In the language of Shapiro and Stiglitz (1984), a “no-shirking condition”

originating from the incentive compatibility constraint supplants the neoclassical labor sup-

ply curve. To derive the no-shirking condition, substitute (3) into (4) and apply the result

that (Ce
t − bCt−1)/(C

s
t − bCt−1) is constant in equilibrium to obtain

(1− s)

(
C̃

C̃ − 1

)
htwt = Ce

t − bCt−1. (17)

For constant family consumption, (17) implies a positive relationship between wt and Nt.

The no-shirking requirement also implies a fixed relationship between employed and un-

employed consumption. Combining (3), (5), (6), and (17) yields

Cu
t − bCt−1

Ce
t − bCt−1

= µ(σ) ≡ 1− 1− σ

1− s

(
C̃ − 1

C̃

)
, (18)

where µ is a scalar with an upper bound of one and increasing in σ. Because changes in σ

translate directly into changes in µ for fixed values of s and C̃, the value of µ fully identifies

the scope of insurance coverage. Under full insurance, µ(σ = 1) = 1 and (18) collapses to

Cu
t = Ce

t . Under partial insurance, µ(σ < 1) < 1 and (18) implies Cu
t = µCe

t +(1−µ)bCt−1.
14

14Agents have an incentive to lie about job offers if the degree of risk sharing satisfies log(Ce
t − bCt−1) +

θ log(T − htet − ξ) ≤ log(Cu
t − bCt−1) + θ log(T ). Rearranging this inequality, after applying results from

(12) and (14), gives µ(σ) ≥ C̃−d. Without the government observing employment draws, workers would be
tempted to falsely report jobless claims anytime the insurance arrangement exceeded this value.
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2.3 The Government

The government conducts monetary policy through control of the one-period nominal interest

rate Rt. Policy decisions are characterized by a generalized Taylor (1993) rule of the form

log
Rt

R
= θR log

Rt−1

R
+ (1− θR)

[
θπ log

πt

π
+ θY 0 log

Yt

Y
+ θY 1 log

Yt−1

Y

]
+ εR,t, (19)

which calls for a gradual adjustment of Rt to steady-state departures of current inflation

and current and past output with coefficients {θπ, θY 0, θY 1}. Lagged output is included in

the policy rule to accommodate a response to movements in output growth, in which case

θY 0 = −θY 1. The coefficient θR captures the degree of interest rate smoothing. The purely

random component of policy is summarized by the stochastic variable εR,t ∼ N(0, σ2
R).

3 Equilibrium and Estimation Strategy

The optimality conditions, various identity and market-clearing conditions, laws of motion

for the shocks, and the monetary policy rule form a system of nonlinear difference equations

governing the dynamic equilibrium of the shirking model. When the shocks are fixed at their

mean values, the equations jointly imply that all prices and quantities converge to a unique

steady state. I log-linearize the difference equations around the steady state and solve the

resulting system using the method developed by Klein (2000).15 The solution takes the form

st = Πst−1 +Ωεt, (20)

ft = Ust, (21)

15The general equilibrium conditions, a derivation of the steady state, and the complete system of log-
linear difference equations can be accessed from an Appendix which is available from the author’s website
(www.mtsu.edu/˜ggivens).
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where st is a vector of exogenous shocks and endogenous state variables, εt contains the

innovations εz,t, εg,t, εa,t, επ,t, εh,t, and εR,t, and ft holds the endogenous flow variables. The

elements of Π and U are functions of the structural parameters, and Ω is a selector matrix.

As illustrated by Kim (2000) and Ireland (2001), a class of models with solutions of the

form (20) - (21) are amenable to maximum likelihood estimation using the Kalman filtering

algorithms described in Hamilton (1994, Ch. 13). With data on the model’s observable

variables, the Kalman filter compiles a history of innovations {εt}Tt=1 that can be used to

construct the sample likelihood function. Because the innovations depend on Π and U, the

structural parameters can in principle be estimated by maximizing the likelihood function.16

The structural parameters are estimated using data on consumption, investment, the

real wage, inflation, and the nominal interest rate. With data on five variables, no fewer

than five shocks must enter the econometric model to circumvent the stochastic singularity

problem emphasized by Ruge-Murcia (2007). Preliminary estimation attempts with just

five shocks (i.e., neutral and investment-specific technology shocks, a preference shock, a

cost-push shock, and a policy shock) were successful under a partial insurance arrangement.

Under full insurance, however, estimation failed because the forecast error covariance matrix

of the data became singular. The reason is that the no-shirking condition (17) simplifies to

(1−s)(C̃/(C̃−1))htwt = Ct−bCt−1 when µ = 1, implying an exact deterministic relationship

between consumption and the real wage in the absence of shocks to hours worked. Using

data on both variables renders the covariance matrix rank-deficient. Permitting temporal

variation in hours worked drives a stochastic wedge between consumption and the real wage,

sidestepping the singularity problem that emerges in the presence of complete risk sharing.

This makes it possible to estimate the partial and full insurance models with the same data.17

16Details concerning the maximum-likelihood estimation procedure can be found in the Appendix available
at www.mtsu.edu/˜ggivens.

17An alternative strategy would be to augment the observable variables with a vector of measurement
errors (e.g., McGratten, 1994; Hall, 1996; Ireland, 2004a). This approach is less appealing because mea-
surement errors carry no structural interpretation and basically absorb specification error. Nevertheless, in
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The key parameters of interest are those characterizing the labor market and the insur-

ance scheme. Alexopoulos (2004) and Alexopoulos (2007) use an exactly identified GMM

strategy to form inferences about their values. The central estimate in both studies is the

ratio d/θ appearing in the incentive compatibility constraint (equation (12) in this paper).

To identify this ratio, assumptions are made about the other parameters affecting labor sup-

ply. Specifically, T and ξ are calibrated to match the time resources available to workers

every quarter, and C̃ is chosen to match the estimated decline in food consumption resulting

from unemployment reported by Gruber (1997). With fixed values for T , ξ, and C̃ and an

estimate of d/θ, the value of s is determined from the Solow condition (equation (14) in this

paper). All five parameters jointly determine the average employment rate N .18

A potential drawback of this strategy is that it forces the researcher to make assumptions

regarding the scope of the insurance program before estimation. In both studies two sets of

estimates are obtained by placing competing restrictions on the risk-sharing parameter µ,

that is, on the equilibrium value of Cu
t /C

e
t . One case considers full insurance by restricting

µ = 1. The other case considers a specific amount of partial insurance in which µ = 1/C̃.

No other risk-sharing arrangements are considered during the course of estimation.19

This paper takes a different approach by leaving µ unrestricted and allowing the data to

ascertain the true relationship between Cu
t and Ce

t . One advantage of this strategy is that

the researcher need not make assumptions regarding T , ξ, C̃, d/θ, or s. It turns out that s

and C̃ appear only as the ratio ((1− s)C̃)/(C̃ − 1), which can be expressed as a function of

parameters that are estimated directly or calibrated prior to estimation.20 Moreover, T , ξ,

the Appendix (available at www.mtsu.edu/˜ggivens) I report estimation results from a version of the model
in which hours worked is constant and measurement errors are included in the observation equation. The
results show that limiting insurance coverage still improves model fit according to the log-likelihood criterion.

18Alexopoulos (2006a) and Alexopoulos (2006b) demonstrate an alternative calibration strategy in which
survey evidence on the size of employee bonuses is used to uncover a value for s, while data on the unem-
ployment rate is used to identify a value for the detection probability. The Solow condition is then used to
back out an implied value for C̃.

19The interpretation of µ is slightly different in this paper due to the presence of habit formation.
20The published Appendix contains an explanation of how to back out implied values of s and C̃ given
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and d/θ serve only to determine steady-state employment N . I choose to insert N into the

linearized model rather than assign values to T , ξ, and d/θ because there is ample evidence

about the size of the former but only sparse information about suitable values for the latter.

Structural parameters are estimated with US data spanning 1959:Q2 to 2005:Q4. Con-

sumption is real personal consumption expenditures, and investment is real gross private

domestic investment. To express the series in per capita terms, divide each by the civilian

noninstitutional population, age 16 and over. The real wage corresponds to real compensa-

tion per hour in the nonfarm business sector. Inflation is the log first difference of the GDP

deflator, and the nominal interest rate is the log of the gross return on three-month Treasury

bills at a quarterly rate. All data except for the interest rate are seasonally adjusted.

To make the data conformable with the model, I subtract the sample mean from observa-

tions of inflation and the interest rate. Consumption, investment, and the real wage, exhibit

positive trends, reflecting the long-run growth in the US economy. Following Rabanal and

Rubio-Ramirez (2005), I regress the logs of each against a constant, a linear time trend, and

a quadratic time trend. The resulting least squares residuals are used for estimation.

4 Maximum Likelihood Estimates

Some parameters are fixed prior to estimation because they are either difficult to identify or

external information about their values is available. The discount factor β is set to 0.9955

to ensure an annualized mean real interest rate equal to the ratio of the sample averages

of inflation and the nominal interest rate. The capital share parameter α is set equal to

0.36 based on evidence from the NIPA. Absent data on the capital stock, the depreciation

rate δ is fixed at 1.11/4 − 1 so that capital depreciates at a rate of 10 percent per annum.

Steady-state employment N is set equal to 0.941 to match the mean employment rate over

knowledge of the other parameters, and it compares the findings to values reported in Alexopoulos (2004).
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the sample period. This parameter is calibrated rather than estimated because it does not

appear in any of the coefficients of the linearized system under full insurance, and so it

will have no effect on the dynamics of the model in this case.21 Finally, there are three

parameters that only directly affect inflation dynamics: the price adjustment probability χ,

firms’ steady state markup denoted η, and the elasticity parameter of the Kimball aggregator

denoted ϵ.22 All three parameters jointly determine the slope coefficient on real marginal

cost in the Phillips curve. Forming inferences about the adjustment probability χ, therefore,

requires specifying fixed values for η and ϵ before estimation. I set η equal to 0.20 to deliver

an average markup of 20 percent (e.g., Basu and Feranld, 1997) and fix ϵ at 33 to match

the benchmark value used by Kimball (1995). With constant values for η and ϵ, initial

attempts to estimate χ unfortunately returned values that point to extremely high amounts

of price rigidity. Consequently, I set χ equal to 0.55, implying that prices are reset optimally

every 6.75 months on average.23 This number corresponds to the midpoint of the micro-

level estimates on the median frequency of price changes of 5.5 months reported by Bils and

Klenow (2004) and 8 months by Nakamura and Steinsson (2008).24 In section 6 I re-estimate

the model for values of χ that correspond to average contract lengths of 5.5 and 8 months,

respectively (i.e., χ = 0.45 and χ = 0.625).

Table 1 displays the point estimates and standard errors of the remaining parameters.

The standard errors are computed by taking the square roots of the diagonal elements of the

information matrix, obtained by inverting the matrix of second derivatives of the maximized

21Refer to the Appendix (available at www.mtsu.edu/˜ggivens) for details.
22The Kimball parameter measures the percent change in a firm’s elasticity of demand with respect to a

one-percent change in the relative price of its good, evaluated in the steady state. Let ε = − G′(1)
G′′(1) denote

the steady-state elasticity of demand, implying that ϵ = P̃ /P
ε

∂ε
∂P̃/P

.
23The average quarterly duration of price contracts is given by (1− χ)−1.
24The price adjustment coefficient is notoriously difficult to estimate in DSGE models using likelihood-

based methods. Ireland (2004b) holds fixed this parameter during estimation because it converged to unrea-
sonably large values when left unrestricted. Applying Bayesian priors that effectively penalize these areas of
the parameter space, Smets and Wouters (2005) and Levin, Onatski, Williams, and Williams (2005) obtain
estimates that far exceed the value used in this paper.
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log-likelihood function. Two sets of estimates are reported. The first set considers partial

insurance by leaving the risk-sharing parameter µ unconstrained. The second set examines

the case of full insurance by restricting µ = 1.

Point estimates of the capital adjustment cost parameter ϕ are large and statistically

significant regardless of the insurance plan. The estimate of habit formation b is 0.26 under

partial insurance and 0.42 under full insurance. Both estimates are smaller than the values

of 0.80 and 0.73 reported by Fuhrer (2000) and Boldrin, Christiano, and Fisher (2001),

respectively, but they are close to the estimates of 0.29 and 0.25 obtained by Levin et al.

(2005) and Ireland (2007).

Concerning the policy rule, estimates of the smoothing coefficient θR are large and statis-

tically significant, reflecting the Federal Reserve’s tendency to adjust interest rates gradually

in response to shocks. Estimates of θπ, θY 0, and θY 1 indicate a greater historical emphasis

on stabilizing inflation than real output. Interestingly, the relative magnitudes of θY 0 and

θY 1 suggest that policy responds more to fluctuations in the growth rate of output than to

its absolute level. Both point estimates are statistically different from zero, but their sum is

not. Finally, comparing estimates across both versions of the model reveals that the policy

response to inflation and output growth is larger under partial insurance.

Turning next to the exogenous shocks, estimates of ρz, ρa, and ρg indicate that neutral

and investment-specific technology shocks as well as preference shocks are highly persistent.

Levin et al. (2005) and Smets and Wouters (2007) also report persistent technology and

preference shocks. Estimates of the standard deviations are statistically significant and not

greatly affected by the insurance plan. There is one exception. The estimate of σh is 0.0083

under partial insurance and 0.03 under full insurance. With complete risk sharing the model

requires large shocks to hours worked in order to fit the data. The reason for this is that

full insurance forces the hours shock to absorb all of the variation in consumption and the

real wage that is not explained by the deterministic component of the no-shirking condition
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(17). By contrast, partial insurance allows the same residual portion to be spread between

work hours and fluctuations in employment.25 This extra degree of freedom drives down the

implied volatility of the hours shock. Because most of the variation in US total hours occurs

along the extensive margin, I view this result as evidence in favor of partial insurance.

The estimate of the risk-sharing parameter µ is 0.49, implying that consumption less the

habit stock for unemployed members is about one-half of what it is for employed members.

To make a direct comparison with the insurance schemes considered in Alexopoulos (2004)

and Alexopoulos (2007), it is necessary to determine what µ reveals about the relative

consumption of the unemployed Cu
t /C

e
t . Both studies fix this ratio, which is constant in

equilibrium, equal to 0.78 prior to estimation, ensuring that consumption declines by 22

percent when unemployed. Unfortunately, it is impossible to derive a parallel ratio for this

model because the presence of habit formation makes Cu
t /C

e
t time varying. In the absence

of shocks, however, Cu
t /C

e
t eventually converges to a steady-state level given by

Cu

Ce
=

µ(1− b) + [N + (1−N)µ]b

(1− b) + [N + (1−N)µ]b
.

The estimates of µ and b imply an estimate of Cu/Ce equal to 0.62 with a standard error of

0.03. The interpretation is that unemployed members consume on average about 38 percent

less than what employed members consume. Estimates of the degree of risk sharing are,

therefore, smaller than, but not totally inconsistent with, values used in previous studies.26

Although the model is fit to aggregate data, it is interesting to see how compatible the

estimate of Cu/Ce is with evidence on the consumption consequences of unemployment ob-

tained using microeconomic data. Research utilizing the Michigan Panel Study of Income

Dynamics, for example, finds that spells of unemployment result in a statistically significant

drop in household food consumption. Dynarksi and Sheffrin (1987) report that “white-

25See the Appendix (available at www.mtsu.edu/˜ggivens) for details.
26A Wald test of the null hypothesis that Cu/Ce = 0.78 is rejected at standard significance levels.
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collar” (“blue-collar”) workers lower consumption by roughly $104 ($26) per quarter of un-

employment. Cochrane (1991) estimates that involuntary job loss reduces growth in food

consumption by 24 to 27 percentage points over a three year period. Stephens (2001) finds

that average consumption falls by 9 percent during the years following a job displacement.

Exploiting state variation in the generosity of unemployment benefits, Gruber (1997) shows

that consumption would decline by 22.2 percent in the absence of unemployment insurance.

Using the Health and Retirement Study, Stephens (2004) reports that job displacement leads

to a 16 percent drop in total food consumption. While these studies point to a clear rejection

of full consumption insurance, the degrees of risk sharing implied by the various estimates

are somewhat larger than the value obtained here. However, it is quite possible that con-

sumption categories other than food are more sensitive to earnings shocks, so one could

argue that these estimates constitute a plausible upper bound on Cu/Ce. Indeed, using

more comprehensive data available from the Consumer Expenditure Survey, Dynarski and

Gruber (1997) find that for every dollar of reduced earnings (defined as hourly wages times

hours worked) total consumption spending drops by 39.2 cents, where total consumption is

the sum of nondurables and durables. As expected, durable consumption is the more elastic

component, falling by 34.6 cents for every dollar of reduced earnings.

To determine if the shirking model with partial insurance can better account for the time

series behavior of the data, I conduct a likelihood ratio test of the restriction imposed by

full insurance. The likelihood ratio statistic is formed by subtracting the restricted value

of the maximized log-likelihood function from its unrestricted counterpart and multiplying

the difference by two. It is asymptotically distributed as a chi-square random variable with

one degree of freedom. Table 1 reports a value of the log-likelihood function of 3135.44 in

the unrestricted model and 3057.26 in the restricted model. Under the null hypothesis that

µ = 1, the test statistic is 156.36 with a p-value less than 0.01. Thus, incorporating limited

risk sharing statistically improves the ability of the shirking model to fit the data.
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5 Examining the Role of Partial Insurance

The preceding analysis makes clear that partial insurance strengthens the broad empirical

performance of the model as measured by the likelihood function. But how exactly does

the inclusion of limited risk sharing, the central mechanism under examination, facilitate

an improvement in model fit? To address this question and gain insight into the role of

insurance coverage per se, I compare simulation results from the unrestricted model estimated

in the previous section to those from the same model with partial insurance replaced by

full insurance. Three different simulation exercises are considered. The first one generates

impulse response functions from the two models to see how the risk-sharing arrangement

affects equilibrium dynamics. The second one assesses the effectiveness of each model in

accounting for the overall volatilities and correlations found in the data. A side-by-side

analysis allows one to identify the contribution of partial insurance in capturing the relevant

moments. The third simulation computes variance decompositions to see whether predictions

about the sources of economic fluctuations are sensitive to changes in the insurance scheme.

The key to understanding how partial insurance improves standard measures of fit is

the behavior of the real wage. To provide intuition on this point before discussing the

broader simulation results, I derive a log-linear expression for the no-shirking condition (17)

that links the real wage to average consumption. The approximation reveals an interesting

“employment effect” that influences the wage-setting process under partial insurance but

vanishes under full insurance. This effect works to dampen the adjustment of wages to shocks

that generate positive co-movement between employment and consumption while amplifying

the response to those that produce negative co-movement. It turns out that wage dynamics

under partial insurance contribute in a significant way to the propagation of various shocks

and ultimately enhances the model’s ability to match some prominent moments in the data.

To derive an expression for the wage, substitute into the no-shirking condition (17) the
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approximation of the risk-sharing condition (18) and the equation defining average consump-

tion. After some rearranging, the linearized no-shirking condition becomes

ŵt =
1

1− b
Ĉt −

b

1− b
Ĉt−1 − τN̂t − ĥt, (22)

where τ = N(1−µ)/[N(1−µ)+µ] and x̂t denotes the log deviation of xt from steady state.

Two aspects of (22) stand out. First, the direct impact of employment on the real

wage, as measured by τ , depends on the scope of the insurance policy. Specifically, τ is a

positive and decreasing function of the risk-sharing parameter µ. In the limiting case of full

insurance (µ = 1) the employment effect disappears altogether as τ = 0. Second, observe

that employment enters (22) with a negative sign. Shocks that boost the real wage through

higher average consumption will be partially offset if those shocks also expand employment.

They will be amplified if higher consumption is accompanied by a reduction in employment.

To understand why the no-shirking condition implies an inverse relationship between the

labor input and the real wage, consider the effects of a unit rise in employment. Under

partial insurance, the average marginal utility of consumption across members falls since

the utility function is concave and Ce
t > Cu

t . For a fixed marginal utility of wealth, the

representative family wants to reduce average consumption by lowering Cf
t . It follows from

(3) and (4) that, all else constant, Ce
t and Cs

t fall by equal amounts. Because detected

shirkers forfeit a portion of their income, the percent decline in Cs
t is larger than that of Ce

t ,

increasing the ratio (Ce
t − bCt−1)/(C

s
t − bCt−1). This elevates the punishment from shirking

and makes employees strictly prefer working under the current wage. Firms’ incentive is to

reduce wages to the point where the consumption ratio realigns with C̃ and employees are

indifferent between working and shirking.

24



5.1 Impulse Response Functions

Evidence of the employment effect and its consequences for equilibrium dynamics appears in

Figures 1 - 4, which graph the impulse response functions to some of the key structural shocks.

Each panel illustrates the response profile in the unrestricted model with partial insurance

(henceforth, the PI model) and, for comparison, the response in the same model with full

insurance imposed after estimation (henceforth, the FI model). The latter are generated by

setting µ = 1 while preserving all other estimates from the PI model. The ensuing differences

in model dynamics are, therefore, driven entirely by the scope of insurance coverage.

Consider first the effects of a cost-push shock in Figure 1. Monetary policy responds

to the rise in inflation by lifting the real interest rate, causing consumption and output to

fall, which, in turn, puts downward pressure on the real wage via the no-shirking condition.

Because it also lowers employment, the downward wage adjustment in the PI model is

smaller than the FI model for reasons discussed above. As will become clear in the next

section, dampening the sensitivity of wages to cost-push shocks helps the shirking model

lower the overall volatility of the real wage and weakens the high correlation with output that

would otherwise occur under full insurance. Less variation in the real wage also contributes

to a diminished but more prolonged adjustment of marginal cost. Firms react to this by

administering smaller price reductions in future periods, enabling the cost-push shock to have

a larger and more persistent effect on inflation. The presence of higher inflation explains why

the interest rate response is larger in the PI model in the aftermath of the shock. The extra

tightening of monetary policy that emerges under partial insurance amplifies the contraction

in output and employment relative to the full insurance case.

Figure 2 illustrates the model’s response to an expansionary (negative) monetary policy

shock. With sticky prices a reduction in the nominal interest rate stimulates both consump-

tion and employment, prompting a smaller increase in the real wage in the PI model. As

in the previous example, an attenuated wage response induced by the employment effect
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leads to greater persistence in the paths of inflation and output through its impact on real

marginal cost. Interestingly, the results under partial insurance are more consistent with the

empirical evidence on the dynamic effects of monetary shocks reported by Christiano et al.

(2005). Using an identified vector autoregression (VAR), these authors find that the real

wage expands by approximately 0.10 percent following a monetary shock. In the PI (FI)

model wages increase by 0.13 (0.68) percent, although the peak effect happens in the impact

period instead of 7 quarters later as suggested by the data. Inflation also exhibits a relatively

weak and gradual response in the data, rising by around 20 basis points 12 quarters after

the policy shock.27 It is clear that the PI model is more compatible with both aspects of

the impulse response function. The maximum departure of inflation from the steady state is

only 28 basis points under partial insurance (51 basis points under full insurance) and occurs

one quarter later than it does under full insurance.

Turning next to the investment-specific technology shock in Figure 3, the consumption

response is initially negative as families take advantage of higher returns to capital by ex-

panding investment purchases. Increases in the capital stock boost the marginal product of

labor, inducing firms to hire additional workers. As predicted by (22), the combination of

falling consumption with rising employment causes the decline in real wages to be greater in

the PI model than the FI model. A stronger countercyclical response to investment-specific

shocks helps the model reduce the broad correlations between wages and output and wages

and employment, a fact that will be made explicit in the next section. Lower real wages in the

PI model also reinforces firms’ desire to keep employment demand high for several periods

after the shock. Persistent employment, through its effect on the production function and

the no-shirking condition, ensures that both output and wages revert to steady state more

slowly under partial insurance. Stated differently, output and the real wage inherit consid-

erable persistence from the employment series when risk sharing is incomplete, especially if

27See Figure 1 on page 6 of Christiano et al. (2005).
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investment-specific shocks are proven to be dominant source of economic fluctuations.

Finally, Figure 4 graphs the response to a neutral technology shock. All else constant,

the increase in output relaxes the family’s lifetime budget constraint, permitting average

consumption to rise through a standard wealth effect channel. Investment spending also

goes up as a result of intertemporal substitution. As is often the case in sticky-price models,

employment contracts after a neutral technology shock because monetary policy does not

fully accommodate the expansion in aggregate demand (e.g., Gaĺı and Rabanal, 2004). In-

deed, the offsetting rise in the interest rate guarantees that the implied percentage growth in

output is less than the percentage growth in productivity, leading to a decline in total em-

ployment. Because consumption and employment move in opposite directions, the increase

in the real wage is substantially larger in the PI model than the FI model. The gap between

the two series persists for a period of about one year, allowing neutral technology shocks to

have a greater impact on the short-run volatility of the real wage under partial insurance.

5.2 Volatilities and Correlations

This section assesses the role of partial insurance in capturing some basic features of the US

business cycle. A set of empirical moments are calculated using the actual data and compared

to ones generated from the PI model and the FI model. The full information approach used

for estimation does not focus exclusively on replicating this small set of statistics, but rather

on matching the broad aspects of the data embodied by the likelihood function. To see

which features are more easily reconciled within a limited insurance framework, I examine

what the PI and FI models imply for these common statistics.

Table 2 reports three sets of statistics. The first group contains the standard deviations of

the logs of detrended Ct, detrended It, detrended wt, Nt, πt, and Rt. Each one is divided by

the standard deviation of the log of detrended Yt, defined in the models and the data as the

sum of consumption and investment. The second set includes contemporaneous correlations
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with output, while correlations with the real wage form the third set.28

Looking first at the standard deviations, the PI model does a better job of matching the

relative volatility of consumption. The standard deviation of investment, however, appears

largely invariant to the scope of insurance coverage. Echoing the results of Alexopoulos

(2004), the PI model also accounts well for the low relative volatility of the real wage. By

contrast, imposing full insurance makes wage volatility almost as high as that of output.

This confirms earlier findings from the impulse response analysis, namely, that wages are

less sensitive to monetary policy and cost-push shocks in the PI model. Finally, both models

overstate the variability of employment but explain well the low variation in inflation and

the nominal interest rate.

The PI model is also generally more successful at replicating the correlations with output.

The consumption and investment correlations, in particular, match closely their counterparts

in the data. Similar to Alexopoulos (2004), allowing for partial insurance reduces the wage

correlation (from 0.90 to 0.67) and increases the employment correlation (from 0.50 to 0.67)

relative to the full insurance case. A major portion of these improvements can be attributed

to the strong countercyclical wage and procyclical employment responses to investment-

specific technology shocks produced by the PI model. Recall from the previous section, the

adjustment of both variables is bigger in the impact period and more persistent thereafter

under partial insurance. Finally, the FI model is better at capturing the positive correlation

between inflation and output, but it falsely predicts the sign of the interest rate correlation.

The results are mixed regarding the covariation of wages. Under both insurance schemes,

the correlation with consumption is too high. Alternatively, the PI (FI) model understates

(overstates) the investment correlation. Both models correctly produce a positive correlation

with inflation and match closely the small negative correlation with the interest rate. Finally,

the PI model generates a small, negative correlation (-0.03) between the real wage and

28Employment is calculated in the data as the log of all employees in the nonfarm business sector.
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employment, while the FI model generates a larger, positive correlation (0.31). Although the

dataset used here indicates that the true correlation is 0.16, the PI model is more consistent

with the Dunlop-Tarshis observation that wages move countercyclically with employment

(e.g., Christiano and Eichenbaum, 1992). This finding can be traced to the behavior of

the labor market following neutral and investment-specific technology shocks. Recall that

while employment and wages move in opposite directions after either shock, the inverse

co-movement between them is even more pronounced under partial insurance.

Figure 5 plots the autocorrelation functions for the logs of detrended Yt, detrended wt,

πt, and Rt as implied by the data and the models. As in Fuhrer and Moore (1995), the

autocorrelations for the data are from an unrestricted, fourth-order VAR.

The PI model is better at reproducing several of the key autocorrelations involving the

real wage. The degree of wage persistence, as measured by correlations between current and

lagged real wages, is larger under partial insurance. Limited risk sharing also helps explain

the cross correlations with output. The PI model captures reasonably well the positive and

diminishing correlation between current output and the real wage one to two years in the

past. It also matches the positive, hump-shaped correlation between the current real wage

and past output, with the peak occurring at a two-year lag.

The PI model also improves the match with some of the correlations between nominal and

real variables. For example, partial insurance helps capture the “inverted leading indicator”

effect (e.g., King and Watson, 1996), that is, the negative correlation between output and

lagged interest rates found in the data. The PI model also predicts the correct sign and

magnitude of the correlation between the interest rate and past wages up to a one-year lag.

5.3 Variance Decompositions

This section evaluates the ability of the model to correctly identify the sources of business

cycle fluctuations observed in the data. To that end, I compare forecast error variance
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decompositions of the PI model with those from the FI model. The goal is to determine

the extent to which limited risk sharing aids in matching the decompositions found in other

studies that estimate the contributions of the same shocks appearing in this paper. For the PI

and FI models, respectively, Tables 3 and 4 decompose the variances of output, consumption,

investment, the real wage, employment, inflation, and the interest rate into shares attributed

to each of the model’s six orthogonal shocks. Panel I reports conditional variances at a one-

year forecast horizon, panel II a three-year horizon, and panel III a ten-year horizon.

Consider first the contribution of monetary shocks. Using a structural VAR, Christiano

et al. (2005) show that policy shocks have a non-trivial effect on output fluctuations but

a small impact on inflation and the real wage. Specifically, they account for 15 percent of

the variance of output at a one-year forecast horizon and 27 percent at a five-year horizon.

Meanwhile, only 4 percent of inflation variability and 2 percent of real wage variability can

be attributed to policy shocks after a period of two years. Where monetary shocks appear

to have a sizeable effect is on interest rate variation. The fraction of the variance of the

one-year forecast error is 32 percent, although their contribution diminishes to 18 percent

for the five-year forecast error.

An inspection of Tables 3 and 4 reveal that the PI model does a better job of matching

several key decompositions reported in Christiano et al. (2005). At a two-year horizon, for

example, monetary shocks account for 6 percent of inflation variability in the PI model but 15

percent in the FI model. Similarly, their contribution to real wage variation is smaller in the

presence of limited risk sharing. Policy shocks are responsible for less than 1 percent of wage

fluctuations after one year in the PI model but 11 percent in the FI model. In accordance

with the data, the PI model also attributes a greater share of interest rate variability to policy

shocks than the FI model. Moving from a one-year to a ten-year horizon, they account for

approximately 29 to 12 percent of interest rate fluctuations in the former but only 17 to 8

percent in the latter. With regard to the output decomposition, both models underestimate
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the portion of the variance due to monetary shocks. At a one-year horizon they account for

7 percent of output variation under partial insurance and 10 percent under full insurance.

The contributions fall to 2 and 3 percent, respectively, at a ten-year horizon.

Turning next to technology shocks, Fisher (2006) demonstrates, using an identified VAR,

that neutral and investment-specific shocks jointly explain about 60 percent of output fluctu-

ations at a forecast horizon of one year and 80 percent after eight years. From the perspective

of an equilibrium model along the lines of Smets and Wouters (2003), Justiniano, Primiceri,

and Tambalotti (2010) find that investment-specific shocks account for 50 percent of the vari-

ance of output and 80 percent of investment at business cycle frequencies. Neutral shocks,

on the other hand, explain only 25 percent of output and less than 10 percent of investment.

The decompositions reported in Tables 3 and 4 show that both models match closely

the joint contribution of neutral and investment-specific shocks to output fluctuations. At a

forecast horizon of one year, the two shocks together explain 65 percent of output volatility

in the PI model and 61 percent in the FI model. The joint contributions rise to 83 and

86 percent, respectively, at a ten-year horizon. When it comes to matching the relative

contributions, however, the PI model is more consistent with the findings of Justiniano et al.

(2010). At a three-year horizon, investment-specific shocks alone account for 54 percent of

the variance of output and 81 percent of the variance of investment under partial insurance,

while neutral technology shocks explain less than 22 percent of output and only 3 percent

of investment. By contrast, the FI model attributes only 37 percent of output variability to

investment-specific shocks but more than 39 percent to neutral shocks.

Regarding cost-push shocks, Ireland (2004b), in the context of an estimated sticky-price

model, attributes to them more than 60 percent of the movements in inflation at all forecast

horizons. Cost-push shocks also account for 15 to 30 percent of the variance of the nominal

interest rate between one and ten years.

The decompositions produced by the shirking model with partial insurance are more
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consistent with evidence on the role of cost-push shocks documented by Ireland (2004b).

Across all forecast horizons, they account for more than 60 percent of inflation variability in

the PI model but around 40 percent in the FI model. Cost-push shocks are also a dominant

source of interest rate volatility under partial insurance, accounting for 37 percent in the

short run and 32 percent in the long run. They have a much smaller effect under full

insurance, explaining less than 15 percent of the variance of the interest rate at all horizons.

Finally, contributions of shocks to hours worked and the time rate of preference are

broadly similar in both models. There is one difference, however, that appears to favor

partial insurance. At a one-year horizon, preference shocks explain as much as 32 percent of

inflation variability and 41 percent of interest rate variability in the FI model. By contrast,

preference shocks are responsible for only 17 and 18 percent of fluctuations in these variables

in the PI model. Primiceri, Schaumburg, and Tambalotti (2006) show that intertemporal

disturbances affecting the representative household’s time rate of preference account for

only a small portion of inflation and interest rate variability. The shirking model is more

consistent with these findings under a partial insurance specification.

6 Sensitivity Analysis

Below I examine the robustness of the principal findings to several changes in the data and

the model. The main purpose is to determine whether the point estimates and results of the

likelihood ratio test are sensitive to the following: subsample estimation, alternative values

for price stickiness and average employment, the absence of habit formation, and the use of

data on real GDP or total employment during estimation.29

29In addition to the sensitivity analysis discussed here, the Appendix (available at www.mtsu.edu/˜ggivens)
reports estimates from a basic sticky-price model without efficiency wage considerations to see how important
the description of the labor market is for fitting the model to the data. It also presents the second moments,
variance decompositions, and impulse response functions generated from the basic sticky-price model and
compares them to ones produced by the PI and FI models.
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6.1 Subsample Estimation

Table 5 reports estimates of the model using a subsample that begins in 1979:Q3. Numerous

studies conclude that the stance of monetary policy changed considerably following the

appointment of Paul Volcker to Chairman of the Federal Reserve (e.g., Clarida, Gaĺı, and

Gertler, 2000). As evidence of a regime shift, they point to structural breaks in the estimated

coefficients of policy rules like (19) when the sample is divided into disjoint subsamples

around 1980. It remains to be seen whether the parameters and results of the likelihood

ratio test are significantly altered when estimated over a period that coincides with a more

stable monetary regime.

Under both insurance arrangements the estimates of θπ, θY 0, and θY 1 are larger than

those from the benchmark model employing the full sample, indicating a stronger response

to inflation and output growth during the post-1979 period. Most of the other parameters are

close to their full sample counterparts. The exceptions are capital adjustment costs ϕ and the

standard deviation of investment shocks σa, the estimates of which are much larger for the

post-1979 sample. Ireland (2003) also reports rising adjustment costs and bigger investment

shocks after the period ending in 1979. Regarding the insurance behavior of consumers, the

estimates of µ (0.38) and b (0.30) jointly determine a steady-state consumption ratio Cu/Ce

equal to 0.56. Accounting for the likely regime shift in monetary policy that occurred after

1979 evidently has only a small effect on the degree of risk sharing implied by the data.

Finally, imposing µ = 1 lowers maximized log likelihood from 1837.75 to 1792.03, producing

a likelihood ratio statistic equal to 91.44 (p-value < 0.01). The rejection of the full insurance

hypothesis is, therefore, robust to subsample estimation.
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6.2 Varying the Degree of Price Stickiness

As explained in section 4, the adjustment probability χ is fixed prior to estimation because

attempts to estimate it along with the other parameters delivered values that are inconsistent

with credible amounts of price stickiness. In choosing χ = 0.55, I appealed to the midpoint

of recent evidence on the frequency of price changes obtained by Bils and Klenow (2004)

and Nakamura and Steinsson (2008). The calibration ensures that firms optimally adjust

prices once every 6.75 months on average. Considering the difficulties in estimating χ, it is

important to check how robust the findings are to alternative values that span the full range

of estimates reported in these two studies.

Table 5 presents estimates of the shirking model for χ equal to 0.45 and 0.625, values that

correspond to price durations of 5.5 months and 8 months, respectively. Both the partial

and full insurance schemes are estimated for each parameter setting. Excluding the policy

coefficients, most of the estimates are not greatly affected by variations in the degree of price

stickiness. The estimates of θπ, θY 0, and θY 1 suggest that higher values of χ (stickier prices)

are associated with a weaker response to inflation and output growth. This relationship

appears only in the partial insurance case. Estimates of the policy coefficients under full

insurance do not change much with the value of χ. Importantly, estimates of µ and Cu/Ce

are also quite stable, and the likelihood ratio test still rejects the full insurance restriction

for both values of χ.

6.3 Varying the Average Employment Rate

By setting N = 0.941 to match the average unemployment rate, the model implicitly treats

individuals who do not work in a given period as formally unemployed in the sense of

belonging to the labor force. It follows that the total number of family members is correctly

understood to reflect the size of the labor force (normalized to one). In the labor search
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literature, however, it is not uncommon to view those who are either unemployed or out of

the labor force as equivalent for the purpose of calibratingN . Andolfatto (1996) and Hairault

(2002), for example, set N = 0.57 to match the ratio of total employment to the civilian

population instead of the labor force. Given the disagreements over the proper interpretation

of N , I re-estimate the model using a smaller value for steady-state employment.

Table 6 reports estimates for N equal to 0.57. Comparing the results under partial

insurance to the benchmark values in Table 5 (or Table 1) shows that estimates of σa and µ

appear somewhat sensitive to large changes in the calibration of N . The insurance parameter

µ, in particular, declines by 22 percent from its benchmark value when N = 0.57. In terms

of relative consumption Cu/Ce, the degree of risk sharing implies that members consume on

average about 50 percent less during periods of unemployment. By contrast, the estimates

under full insurance are identical to the ones obtained for the case of N = 0.941. This

finding verifies the claim made in section 4 that steady-state employment has no effect on

the dynamics of the linearized model when µ = 1. Finally, the difference in log likelihood

across the two insurance arrangements implies that the data still firmly reject the hypothesis

of complete risk sharing.

6.4 No Habit Formation

Habit formation in consumption is one feature that distinguishes the present shirking model

from the previous models of Alexopoulos (2004) and Alexopoulos (2007). Because it ap-

pears in the incentive compatibility constraint, consumption habits have a potentially siz-

able impact on equilibrium real wages and, therefore, the flow of transfers from employed

to unemployed members. In what follows I examine whether inferences about the size and

significance of unemployment insurance are affected by the presence of habit formation.

Table 6 presents estimates of the model under partial and full insurance with the restric-

tion b = 0 applied before estimation. A comparison with the benchmark analysis reveals
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several interesting results. First, dropping habit formation from the model with partial in-

surance has little effect on estimates of the other parameters. The point estimate of µ, for

instance, is 0.49 in the benchmark model as well as the constrained version without con-

sumption habits. Recall that when b = 0, however, µ simplifies to Cu
t /C

e
t , so implied values

of the relative consumption of the unemployed are lower in the absence of habit formation.

Second, removing habit formation in the full insurance case reduces estimates of the policy

rule coefficients and the capital adjustment cost parameter. Third, tests of the null hypoth-

esis of full insurance are still easily rejected at normal significance levels in the restricted

model with b = 0. The relevant likelihood ratio statistic is 186.66 with a p-value less than

0.01. Lastly, incorporating habit formation improves the fit of the shirking model regardless

of the scope of insurance coverage. The log likelihood values under partial insurance with

and without habit formation imply a likelihood ratio statistic of 17.22 (p-value < 0.01). The

corresponding statistic under full insurance is 47.52.

6.5 Using Real GDP Data for Estimation

In selecting which time series to use for estimation, I followed the strategy proposed by

Ireland (2003) whereby data on consumption and investment are inserted into the Kalman

filter rather than data on output alone. The rationale is that these series provide the most

relevant information for estimating two parameters that are critical to the model’s empiri-

cal performance, namely, the capital adjustment cost term ϕ (e.g., Kimball, 1995; Casares

and McCallum, 2006) and the risk-sharing coefficient µ. Ireland (2001) demonstrates that

absent data on investment, it is difficult to identify the adjustment cost parameter in a class

of models similar to the one presented here. Moreover, because unemployment leads to con-

sumption disparity across members, per capita consumption is likely the preferred series for

attaining the best possible estimate of µ.

Despite sound reasons for excluding output during estimation, there are countless studies
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that estimate DSGE models using data on real GDP (e.g., Kim, 2000; Christiano et al.,

2005; Smets and Wouters, 2007). The belief is that GDP contains information on the

cyclical properties of the US economy that is useful for obtaining estimates of key structural

parameters. Considering the prevalence of this approach in the literature, it is reasonable

to ask whether estimating the shirking model with data on real GDP significantly alters

the main findings. Unless more shocks are built into the economy, however, output can

not be added to the current list of observable variables without encountering the stochastic

singularity problem discussed in section 3. As a result, I choose to drop investment from

the set of observables and replace it with output.30 This allows me to satisfy the full rank

requirement without having to take a stand on new sources of exogenous variation in the

model. The estimates are reported in Table 6.

Incorporating data on real GDP produces substantial changes in the estimates of several

parameters, particularly in the case of partial insurance. For example, the policy response

to output growth, measured by the joint values of θY 0 and θY 1, is about 50 percent larger

when the dataset includes GDP. Employing output as an observable variable also drives

ρz towards the upper bound of the admissible parameter space where neutral technology

shocks function like a random walk. Concerning the parameters describing private behavior,

estimates of ϕ and b indicate much higher capital adjustment costs in the model with partial

insurance but a negligible role for habit formation. The estimates of µ (0.27) and Cu/Ce

(0.28) point to far less risk-sharing activity than what the benchmark estimation implies,

with consumption falling by around 70 percent for members who enter the unemployment

pool. Despite large changes in some parameter estimates, the classical likelihood ratio test

still easily rejects the null hypothesis of full insurance. Using data on real GDP instead of

investment increases the likelihood ratio statistic to 375.36 (p-value < 0.01).

30The output series used for estimation corresponds to the residuals from a least-squares regression of the
log of per capita real GDP against a constant and both linear and quadratic time trends.
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6.6 Using Employment Data for Estimation

There are a number of recent papers that estimate models emphasizing various labor market

frictions using data on total employment (e.g., Alexopoulos, 2007; Trigari, 2009; Christoffel,

Kuester, and Linzert, 2009). A common goal among these studies is to better understand

the relationship between labor market activity and the broader macroeconomy. Employment

data is potentially useful in this regard becuase it is a key indicator of current labor market

conditions. Below I examine how sensitive estimates of the shirking model are to the use of

data on aggregate employment.31 As discussed in the previous section, however, inserting

another variable into the Kalman filter, all else equal, renders the model stochastically singu-

lar. To make estimation feasible without introducing additional shocks, I swap employment

for investment in the vector of observables. The results appear in Table 6.

Although some parameter estimates change dramatically with the use of employment

data, inferences about the insurance component of the model remain largely unaltered. The

estimates of µ (0.48) and Cu/Ce (0.58) are close to the benchmark values, and a likelihood

ratio test rejects the null hypothesis of full insurance with a p-value less than 0.01. Under

both risk-sharing arrangements, estimates of the capital adjustment cost parameter ϕ and

the reaction coefficients θY 0 and θY 1 are much bigger when the dataset includes employment.

By contrast, estimates of the standard deviation of neutral technology shocks σz are an order

of magnitude smaller than their counterparts from the benchmark model. For the case of

partial insurance, designating Nt as an observable variable amplifies the point estimate of

σh. This occurs because the hours shock now has to absorb all of the joint variation in

consumption, the real wage, and employment that does not satisfy the endogenous portion

of the no-shirking condition (22). In the model with full insurance using employment data

lowers the estimate of habit formation b by almost 60 percent.

31The employment series is constructed from the residuals of a least-squares regression of the log of total
payrolls in the non-farm business sector against a constant and both linear and quadratic time trends.
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7 Concluding Remarks

This paper estimates a sticky-price model that gives prominence to a shirking, efficiency-

wage view of the labor market along the lines of Alexopoulos (2004). Central to the model

is an insurance mechanism that allows, but does not require, agents to fully insure against

income risk. The main objectives are to determine the extent of risk sharing implied by the

data and to assess the importance of the insurance mechanism for improving model fit.

Maximum likelihood estimates reveal that the data prefer an arrangement in which in-

dividuals only partially insure. Likelihood ratio tests reject the hypothesis of full insurance.

Simulations of models with and without full insurance provide additional, albeit less formal,

evidence in favor of limited risk sharing. In particular, I find that with partial insurance the

model is better at capturing the sample volatilities and correlations involving the real wage.

Even though partial insurance improves empirical performance along numerous dimen-

sions, some concerns remain that warrant further consideration. First, the model generates

too much (un)employment volatility. Second, the correlations between the real wage and

inflation are inconsistent with the data and invariant to the scope of insurance coverage (see

Figure 5). These facts suggest that the present shirking model lacks the right economic

machinery needed to capture the true dynamic relationships reflected in the sample. A more

sophisticated model of unemployment that emphasizes search frictions in the labor market

along the lines of Mortensen and Pissarides (1994) could possibly correct these deficiencies.

Indeed, there is now a large literature that integrates labor search into otherwise traditional

sticky-price models of the business cycle (e.g., Walsh, 2005; Krause and Lubik, 2007; Trigari,

2009; Christofell et al., 2009). The resulting framework has become the workhorse model

with which to study the impact of labor market frictions on output and inflation dynamics.32

32Despite the growing popularity of search frictions, I chose to adopt a shirking, efficiency-wage specifica-
tion of the labor market for two reasons. First, Alexopoulos (2004) has shown that the empirical limitations
of the shirking model, as originally developed by Danthine and Donaldson (1990), are mainly an artifact of
the firms’ punishment mechanism. By penalizing detected shirkers with a wage reduction rather than firing,
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Lastly, a more appealing model would allow for joint inference about the extent of risk shar-

ing and the size of nominal rigidity. Data limitations make it difficult in the present study

to identify the adjustment probability that governs the degree of price stickiness. Recent

papers have had some success in identifying this parameter by using Bayesian methods. I

believe that confronting all these issues is an important task but properly the business of

future research.

the model is more successful at accounting for key labor market dynamics. Second, partial unemployment
insurance is already a prominent feature of many recent shirking models (e.g., Alexopoulos, 2004; Alex-
opoulos, 2007; Givens, 2008). To my knowledge, the search and matching literature has yet to incorporate
imperfect risk sharing in a tractable way.
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Appendix. A Discussion of s and C̃

What do the parameter estimates and calibration imply for the values of s and C̃? Given

estimates of µ and b and fixed values for β, δ, α, η, and N , the steady-state equilibrium

determines an inverse relationship between s and C̃.33 Solving for C̃ in terms of s yields

C̃ =

(
1− (1− s)

(1− α)mc[N + (1−N)µ]

(1− b)C
Y
N

)−1

. (A.1)

It is easy to verify from (A.1) that C̃ is a decreasing function of s. This means that as the

up-front portion of the wage payment falls (or as the end-of-period bonus rises), consumption

minus the habit stock of workers relative to that of detected shirkers goes up.

Alexopoulos (2004) documents a similar relationship between s and C̃, particularly in

the partial insurance case. Without habit formation, however, C̃ simplifies in her model to

Ce
t /C

s
t . To draw a better comparison with her results, one must examine what the level of C̃

in the present shirking model implies for Ce
t /C

s
t . Rearranging the identity for C̃ that follows

from (14) and evaluating the resulting expression in the steady state gives

Ce

Cs
= C̃

(
1− (1− C̃)b

C

Ce

)−1

, (A.2)

where Ce/C = ((1− b)/[N +(1−N)µ])+ b. Equations (A.1) and (A.2) jointly determine an

inverse relationship between s and Ce/Cs, which is depicted graphically in Figure 6 for values

of s ranging from zero to one. The results show that the steady-state consumption ratio is

less than two for any s greater than one-third. For Ce/Cs equal to 1.285, the value considered

in Alexopoulos (2004), I find a corresponding value of s equal to 0.70. Alexopoulos’ model

produces a value of s equal to 0.78.

33See the Appendix (available at www.mtsu.edu/˜ggivens) for details.
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Table 1: Maximum Likelihood Estimates of the Benchmark Model

Parameter
Partial Insurance Full Insurance
Estimate Std. Error Estimate Std. Error

ϕ 44.1014 11.3807 22.0684 6.0613
b 0.2636 0.0543 0.4153 0.0456
µ 0.4875 0.0275 1∗ –
θR 0.8534 0.0183 0.8063 0.0254
θπ 1.8626 0.2312 1.6096 0.1550
θY 0 0.7004 0.1314 0.5699 0.0953
θY 1 −0.7200 0.1336 −0.5768 0.0959
ρz 0.9482 0.0191 0.9465 0.0236
ρg 0.8873 0.0221 0.8926 0.0341
ρa 0.8866 0.0346 0.9128 0.0299
σz 0.0093 0.0008 0.0131 0.0018
σg 0.0221 0.0029 0.0169 0.0026
σa 0.0469 0.0130 0.0279 0.0069
σπ 0.0057 0.0004 0.0036 0.0002
σh 0.0083 0.0010 0.0302 0.0016
σR 0.0020 0.0001 0.0021 0.0002
logL 3135.4389 3057.2626
LR 156.3526

(0.0000)

Notes: The superscript ∗ denotes a parameter value that is imposed prior to estimation. The term logL
denotes the maximized value of the log-likelihood function. The term LR denotes the likelihood ratio statistic
for a test of the null hypothesis that µ = 1, and the number in parenthesis is the associated p-value.
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Table 2: Volatilities and Correlations

Y C I w N π R
I. U.S. Data: 1959:Q2 - 2005:Q4
Relative Standard Deviation 1.00 0.78 2.57 0.80 0.50 0.15 0.16
Correlation with Y 1.00 0.95 0.89 0.58 0.62 0.17 −0.06
Correlation with w 0.58 0.62 0.40 1.00 0.16 0.47 −0.06

II. PI Model
Relative Standard Deviation 1.00 0.83 1.90 0.76 0.81 0.10 0.09
Correlation with Y 1.00 0.93 0.88 0.67 0.67 −0.07 −0.27
Correlation with w 0.67 0.87 0.28 1.00 −0.03 0.13 −0.04

III. FI Model
Relative Standard Deviation 1.00 0.89 1.89 0.92 0.68 0.12 0.10
Correlation with Y 1.00 0.91 0.82 0.90 0.50 0.13 0.03
Correlation with w 0.90 0.98 0.50 1.00 0.31 0.13 −0.03

Notes: Relative standard deviations are normalized by the standard deviation of output, defined in the model
and the data as the sum of consumption and investment.
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Table 3: Variance Decompositions in the PI Model

Y C I w N π R
I. 1-Year Horizon
Neutral Technology 16.77 34.89 1.36 53.67 5.23 0.83 3.52
Preference 1.82 21.01 4.36 10.70 2.44 17.31 18.05
Investment-Specific 48.49 2.36 84.74 23.42 50.96 1.21 12.58
Cost-Push 26.02 33.48 7.32 1.02 32.69 76.58 37.00
Hours 0.00 0.00 0.00 10.92 0.00 0.00 0.00
Monetary Policy 6.91 8.24 2.21 0.26 8.68 4.06 28.83

II. 3-Year Horizon
Neutral Technology 21.68 44.23 3.08 68.28 3.05 1.07 2.08
Preference 4.66 9.87 8.59 7.51 6.58 26.18 42.10
Investment-Specific 54.05 19.14 81.03 16.49 55.97 1.37 5.88
Cost-Push 16.81 23.20 6.11 0.85 29.23 65.37 36.16
Hours 0.00 0.00 0.00 6.70 0.00 0.00 0.00
Monetary Policy 2.81 3.56 1.18 0.17 5.16 6.00 13.77

III. 10-Year Horizon
Neutral Technology 22.02 36.91 4.57 53.81 2.83 1.35 2.45
Preference 5.12 6.72 8.99 4.77 8.15 25.65 47.91
Investment-Specific 61.26 43.02 80.59 36.99 57.18 2.51 5.29
Cost-Push 9.96 11.59 4.90 0.79 27.04 64.61 32.10
Hours 0.00 0.00 0.00 3.52 0.00 0.00 0.00
Monetary Policy 1.65 1.76 0.95 0.12 4.80 5.87 12.24

Notes: The numbers correspond to the percentage of the variance of each variable attributed to each shock.
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Table 4: Variance Decompositions in the FI Model

Y C I w N π R
I. 1-Year Horizon
Neutral Technology 22.87 28.14 3.05 25.04 9.06 4.71 0.90
Preference 6.45 34.53 6.12 31.79 8.81 31.92 41.14
Investment-Specific 38.06 0.11 85.39 0.11 39.92 3.52 25.73
Cost-Push 22.20 25.52 3.61 22.23 28.69 45.48 14.77
Hours 0.00 0.00 0.00 9.92 0.00 0.00 0.00
Monetary Policy 10.41 11.70 1.83 10.90 13.52 13.38 17.47

II. 3-Year Horizon
Neutral Technology 39.29 55.51 6.13 49.50 7.57 4.55 1.69
Preference 6.14 18.55 10.29 19.44 11.72 33.54 57.55
Investment-Specific 37.17 3.15 80.14 3.05 41.19 4.37 23.05
Cost-Push 12.49 16.55 2.38 15.42 28.10 42.97 9.15
Hours 0.00 0.00 0.00 5.93 0.00 0.00 0.00
Monetary Policy 4.91 6.24 1.06 6.66 11.42 14.56 8.55

III. 10-Year Horizon
Neutral Technology 36.70 49.44 8.15 46.15 7.40 4.86 2.10
Preference 4.70 10.60 9.70 11.82 11.91 33.24 58.55
Investment-Specific 48.81 27.73 79.40 25.87 42.00 4.89 23.06
Cost-Push 7.04 8.89 1.91 8.91 27.53 42.57 8.43
Hours 0.00 0.00 0.00 3.41 0.00 0.00 0.00
Monetary Policy 2.76 3.34 0.84 3.84 11.16 14.45 7.85

Notes: The numbers correspond to the percentage of the variance of each variable attributed to each shock.
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Table 5: Maximum Likelihood Estimates of Alternative Models

Parameter
Benchmark 1979:Q3 - 2005:Q4 χ = 0.45 χ = 0.625

Partial Full Partial Full Partial Full Partial Full

ϕ 44.1014
(11.3807)

22.0684
(6.0613)

83.8186
(16.8111)

40.7150
(13.8014)

55.2913
(12.7765)

20.8056
(5.4125)

35.5831
(9.2433)

22.7848
(6.6282)

b 0.2636
(0.0543)

0.4153
(0.0456)

0.3030
(0.0968)

0.4873
(0.0532)

0.3052
(0.0537)

0.3953
(0.0449)

0.2340
(0.0542)

0.4304
(0.0462)

µ 0.4875
(0.0275)

1∗ 0.3763
(0.0351)

1∗ 0.4537
(0.0272)

1∗ 0.5223
(0.0268)

1∗

θR 0.8534
(0.0183)

0.8063
(0.0254)

0.8709
(0.0224)

0.8239
(0.0284)

0.8757
(0.0187)

0.7983
(0.0263)

0.8345
(0.0184)

0.8104
(0.0249)

θπ 1.8626
(0.2312)

1.6096
(0.1550)

2.7538
(0.4477)

2.2660
(0.3065)

2.2157
(0.3300)

1.6536
(0.1584)

1.6340
(0.1784)

1.5640
(0.1504)

θY 0 0.7004
(0.1314)

0.5699
(0.0953)

1.0504
(0.2405)

0.7571
(0.1628)

0.7934
(0.1680)

0.5294
(0.0870)

0.6525
(0.1128)

0.5984
(0.1028)

θY 1 −0.7200
(0.1336)

−0.5768
(0.0959)

−1.0336
(0.2358)

−0.7376
(0.1557)

−0.8251
(0.1726)

−0.5422
(0.0885)

−0.6641
(0.1139)

−0.5994
(0.1022)

ρz 0.9482
(0.0191)

0.9465
(0.0236)

0.9999† 0.9612
(0.0333)

0.9565
(0.0200)

0.9496
(0.0214)

0.9423
(0.0184)

0.9462
(0.0248)

ρg 0.8873
(0.0221)

0.8926
(0.0341)

0.8887
(0.0286)

0.8808
(0.0604)

0.8808
(0.0237)

0.8994
(0.0335)

0.8927
(0.0216)

0.8879
(0.0337)

ρa 0.8866
(0.0346)

0.9128
(0.0299)

0.8829
(0.0348)

0.8764
(0.0368)

0.8700
(0.0333)

0.9171
(0.0297)

0.9013
(0.0341)

0.9097
(0.0295)

σz 0.0093
(0.0008)

0.0131
(0.0018)

0.0086
(0.0010)

0.0130
(0.0020)

0.0088
(0.0008)

0.0130
(0.0013)

0.0097
(0.0009)

0.0126
(0.0022)

σg 0.0221
(0.0029)

0.0169
(0.0026)

0.0311
(0.0053)

0.0206
(0.0046)

0.0250
(0.0034)

0.0164
(0.0027)

0.0197
(0.0026)

0.0172
(0.0026)

σa 0.0469
(0.0130)

0.0279
(0.0069)

0.0820
(0.0193)

0.0457
(0.0149)

0.0576
(0.0151)

0.0263
(0.0061)

0.0390
(0.0104)

0.0289
(0.0077)

σπ 0.0057
(0.0004)

0.0036
(0.0002)

0.0048
(0.0005)

0.0028
(0.0002)

0.0073
(0.0005)

0.0037
(0.0003)

0.0049
(0.0003)

0.0036
(0.0002)

σh 0.0083
(0.0010)

0.0302
(0.0016)

0.0081
(0.0018)

0.0348
(0.0024)

0.0095
(0.0012)

0.0300
(0.0016)

0.0075
(0.0009)

0.0303
(0.0016)

σR 0.0020
(0.0001)

0.0021
(0.0002)

0.0019
(0.0001)

0.0019
(0.0002)

0.0019
(0.0001)

0.0021
(0.0002)

0.0020
(0.0001)

0.0021
(0.0002)

logL 3135.44 3057.26 1837.75 1792.03 3092.11 3053.96 3162.34 3059.57

LR 156.35
(0.0000)

91.44
(0.0000)

76.30
(0.0000)

205.54
(0.0000)

Cu/Ce 0.6196
(0.0317)

1∗ 0.5604
(0.0620)

1∗ 0.6167
(0.0304)

1∗ 0.6317
(0.0311)

1∗

Notes: The superscript ∗ denotes a parameter value that is imposed prior to estimation. The superscript †

denotes a value that converged to the boundary of the allowable parameter space during estimation. The
term logL denotes the maximized value of the log-likelihood function. The numbers in parentheses are
standard errors. The standard errors for Cu/Ce are obtained using the delta method. The term LR denotes
the likelihood ratio statistic for a test of the null hypothesis that µ = 1, and the number in parenthesis is
the associated p-value.
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Table 6: Maximum Likelihood Estimates of Alternative Models

Parameter
N = 0.57 No Habit GDP Data Employment Data

Partial Full Partial Full Partial Full Partial Full

ϕ 23.2882
(5.0265)

22.0684
(6.0613)

44.1927
(11.6914)

9.9771
(2.1057)

108.0848
(19.7526)

44.2613
(11.3006)

128.8620
(18.2917)

133.3808
(15.3826)

b 0.2408
(0.0490)

0.4153
(0.0456)

0∗ 0∗ 0.0164
(0.0762)

0.3859
(0.0450)

0.1931
(0.0447)

0.1734
(0.0394)

µ 0.3819
(0.0232)

1∗ 0.4889
(0.0283)

1∗ 0.2709
(0.0291)

1∗ 0.4832
(0.0475)

1∗

θR 0.8120
(0.0221)

0.8063
(0.0254)

0.8403
(0.0189)

0.6530
(0.0460)

0.8586
(0.0171)

0.8098
(0.0262)

0.7312
(0.0503)

0.6590
(0.0581)

θπ 1.7476
(0.1741)

1.6096
(0.1550)

1.7946
(0.2113)

1.2647
(0.0671)

1.6678
(0.2104)

1.7359
(0.1847)

2.1640
(0.2854)

2.0691
(0.2319)

θY 0 0.6558
(0.1029)

0.5699
(0.0953)

0.6550
(0.1197)

0.4642
(0.0641)

1.0922
(0.2057)

1.0321
(0.1759)

4.2375
(0.7035)

3.2107
(0.4403)

θY 1 −0.6657
(0.1044)

−0.5768
(0.0959)

−0.6676
(0.1205)

−0.4671
(0.0623)

−1.1061
(0.2065)

−1.0370
(0.1746)

−4.2192
(0.6933)

−3.2105
(0.4336)

ρz 0.9192
(0.0216)

0.9465
(0.0236)

0.9284
(0.0192)

0.9465
(0.0219)

0.9999† 0.9463
(0.0276)

0.9849
(0.0096)

0.9838
(0.0155)

ρg 0.8797
(0.0274)

0.8926
(0.0341)

0.8969
(0.0200)

0.9243
(0.0261)

0.8786
(0.0220)

0.9007
(0.0267)

0.9156
(0.0174)

0.9295
(0.0175)

ρa 0.9076
(0.0305)

0.9128
(0.0299)

0.8886
(0.0350)

0.9430
(0.0242)

0.8461
(0.0339)

0.8958
(0.0289)

0.8579
(0.0228)

0.9028
(0.0164)

σz 0.0111
(0.0011)

0.0131
(0.0018)

0.0101
(0.0008)

0.0113
(0.0016)

0.0064
(0.0005)

0.0104
(0.0017)

0.0015
(0.0003)

0.0012
(0.0004)

σg 0.0178
(0.0025)

0.0169
(0.0026)

0.0206
(0.0028)

0.0101
(0.0016)

0.0270
(0.0036)

0.0186
(0.0028)

0.0170
(0.0028)

0.0181
(0.0037)

σa 0.0259
(0.0056)

0.0279
(0.0069)

0.0473
(0.0133)

0.0135
(0.0026)

0.0667
(0.0137)

0.0322
(0.0080)

0.0700
(0.0094)

0.0756
(0.0087)

σπ 0.0058
(0.0004)

0.0036
(0.0002)

0.0058
(0.0004)

0.0037
(0.0002)

0.0038
(0.0002)

0.0037
(0.0002)

0.0046
(0.0003)

0.0053
(0.0003)

σh 0.0066
(0.0010)

0.0302
(0.0016)

0.0063
(0.0008)

0.0288
(0.0015)

0.0048
(0.0007)

0.0300
(0.0016)

0.0267
(0.0014)

0.0291
(0.0015)

σR 0.0022
(0.0002)

0.0021
(0.0002)

0.0020
(0.0001)

0.0028
(0.0004)

0.0019
(0.0001)

0.0022
(0.0002)

0.0028
(0.0004)

0.0029
(0.0004)

logL 3143.16 3057.26 3126.83 3033.50 3604.83 3417.15 3493.82 3468.22

LR 171.80
(0.0000)

186.66
(0.0000)

375.36
(0.0000)

51.20
(0.0000)

Cu/Ce 0.4986
(0.0290)

1∗ 0.4889
(0.0283)

1∗ 0.2824
(0.0664)

1∗ 0.5806
(0.0391)

1∗

Notes: The superscript ∗ denotes a parameter value that is imposed prior to estimation. The superscript †

denotes a value that converged to the boundary of the allowable parameter space during estimation. The
term logL denotes the maximized value of the log-likelihood function. The numbers in parentheses are
standard errors. The standard errors for Cu/Ce are obtained using the delta method. The term LR denotes
the likelihood ratio statistic for a test of the null hypothesis that µ = 1, and the number in parenthesis is
the associated p-value.

52



Figure 1: Impulse Responses to a Cost-Push Shock
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Notes: Each panel graphs the response of one of the model’s variables to an estimated one-standard-deviation
cost-push shock. Real variables are expressed as percentage point deviations from steady state. Inflation and
the nominal interest rate are measured in percentage points at an annual rate. The solid lines correspond to
the PI model and the dashed lines correspond to the FI model.
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Figure 2: Impulse Responses to a Monetary Policy Shock
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Notes: Each panel graphs the response of one of the model’s variables to an estimated one-standard-deviation
(negative) monetary policy shock. Real variables are expressed as percentage point deviations from steady
state. Inflation and the nominal interest rate are measured in percentage points at an annual rate. The solid
lines correspond to the PI model and the dashed lines correspond to the FI model.
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Figure 3: Impulse Responses to an Investment-Specific Technology Shock
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Notes: Each panel graphs the response of one of the model’s variables to an estimated one-standard-deviation
investment-specific technology shock. Real variables are expressed as percentage point deviations from steady
state. Inflation and the nominal interest rate are measured in percentage points at an annual rate. The solid
lines correspond to the PI model and the dashed lines correspond to the FI model.
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Figure 4: Impulse Responses to a Neutral Technology Shock
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Notes: Each panel graphs the response of one of the model’s variables to an estimated one-standard-deviation
neutral technology shock. Real variables are expressed as percentage point deviations from steady state.
Inflation and the nominal interest rate are measured in percentage points at an annual rate. The solid lines
correspond to the PI model and the dashed lines correspond to the FI model.
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Figure 5: Vector Autocorrelation Functions
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Notes: Vector autocorrelation functions for output Y , the real wage w, inflation π, and the nominal interest
rate R are drawn for the US data (solid line), the PI model (dashed line), and the FI model (dotted line).
Output is defined in the model and the data as the sum of consumption and investment.
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Figure 6: Relationship Between s and Ce/Cs
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