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Monetary policy rules are naturally amenable to modern
econometric policy evaluation methods that were developed
as part of the rational expectations revolution in macroe-
conomics in the early 1970’s. When using these methods,
researchers first build a structural model of the economy,
consisting of mathematical equations with estimated numer-
ical parameter values. They then test out different rules by
simulating the model stochastically.... One monetary policy
rule is better than another...if the simulation results show
better economic performance. (Taylor, 1998).

Modern econometric policy evaluation entails two steps. In the first,
the parameters of a structural model are either estimated or obtained
through calibration. In the second, the performance of alternative policy
rules is studied and conclusions about policy are reached. Fuhrer (1997)
is a good example of the two part approach. He fits a small structural
model to data for the US economy treating the coefficients of his policy
rule as free parameters. He then derives an optimal policy frontier by
varying the values of the policy-rule coefficients to minimize a weighted
sum of the variance of output and the variance of inflation. He evaluates
policy by comparing the variances of output and inflation achieved by
the estimated rule with points on the policy frontier.

In this paper, we follow standard practice by setting out a small struc-
tural model, obtaining estimates of its parameters, and then evaluating

1Salemi is the corresponding author and may be reached via email at
Michael_Salemi@unc.edu. The authors thank colleagues at UNC for valuable com-
ments. Remaining errors are our own. Michael Salemi thanks participants at the
European Monetary Forum Conference on Money in honor of Sir Alan Walters for
their helpful comments on a related paper.
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the performance of alternative policy rules while treating estimates of
the structural parameters as fixed and known. We break with standard
practice in an interesting way. Our maintained hypotheses include an
auxiliary assumption that permits us to identify the covariance matrix of
structural errors. On the assumption that structural covariances as well
as structural parameters are known and fixed, we are able to compare
the performance of backward- and forward-looking fixed coefficient rules.
We are also able to compare the performance of fixed-coefficient rules to
the performance of the optimal commitment policy and to the optimal
policy under discretion. Our paper thus provides evidence on the practi-
cal importance to a central bank of obtaining a commitment mechanism
and the loss in performance when the commitment mechanism takes the
form of a simple and verifiable fixed-coefficient policy rule.

We evaluate the performance of a policy with a loss function with
three inputs. The first input is a set of three weights that represent
the relative importance to the central bank of stabilizing inflation, out-
put, and interest rates. We compute optimal policies and corresponding
loss values for different policy weights in order to determine whether
conclusions about the relative performance of policies are sensitive to
policy objectives. Policy weights range between zero and one and sum
to one. The second input to the loss function is the covariance matrix
of structural errors. For fixed-coefficient rules, we use the Klein algo-
rithm to compute the covariance matrix of reduced form errors from the
structural error covariance matrix, the structural parameters, and the
coeflicients of the policy rule. The reduced form error covariance matrix
is then used to compute policy loss. The third input to the loss function
is the state-transition coefficient matrix. For fixed-coefficient rules, we
compute this matrix with the Klein algorithm. For optimal commitment
and discretion, we derive the reduced form and compute policy loss with
a version of Soderlind’s (1999) algorithm.

Our policy analysis supports several interesting findings. First, the
original Taylor rule, with a priori coefficient values, performs quite
well when stabilizing inflation and stabilizing output are both impor-
tant objectives. Its performance can, however, be very poor for other
sets of weights. Second, for a wide variety of policy-objective weights,
backward-looking rules perform as well as or better than rules that per-
mit the central bank to adjust the rate of interest in response to current
output and inflation. In fact, a backward looking rule which permits the
central bank to condition the rate of interest on the full state vector for
the economy is the best performer for more than half of our policy objec-
tive weight configurations. Third, when the central bank makes output
stabilization its chief objective, an optimized version of the Taylor rule
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where the interest rate depends on current values of output and inflation
and the lagged interest rate is the best performer among the rules we
consider.

We begin in section 1 with an example that explains how the coeffi-
cients of a policy rule are computed when the structure is “ backward-
looking.” The example highlights the challenges associated with com-
puting optimal policies for “ forward-looking” models. Section 1 also
describes the algorithm we use to compute policy loss. In section 2, we
set out the forward-looking structural model that underlies our analysis
and explain how we use the Klein algorithm to solve it and compute
policy loss. In section 3, we present the results of our policy evaluation
for fixed coefficient rules. In section 4, we explain how we compute loss
for optimal commitment and discretionary policies and compare results
for these policies with results for fixed-coefficient policies described in
section 3. Our concluding remarks are contained in section 5.

1 OpTIMAL Poricy wWITH A BACKWARD LOOKING
MODEL.

We begin with an example where monetary policy is like a game against
nature in the sense that the parameters of the economy’s state transi-
tion equation are independent of the policy chosen by the central bank.
If the state transition equation is linear and the bank’s objective func-
tion is quadratic, optimal policy is characterized by the matrix Ricatti
equations. Given regularity conditions, backward iteration of the Ri-
catti equations shows that optimal policy is a fixed-coefficient rule. The
example permits us to highlight the challenges that arise when, in con-
trast, the structural equations of the model are forward looking and
optimal policies and state transition equations must be simultaneously
determined.

The example is built around a three equation model for output, in-
flation, and the interest rate. The central bank wishes to stabilize the
time paths of output and inflation by controlling the interest rate (r).
Stabilizing output means keeping it close to its long run growth path.
Stabilizing the inflation rate means keeping it constant. To keep the no-
tation simple, y and p are defined as differences of output and inflation
from target values so that the central bank wants to keep y and p as
close to zero as possible.

The model is composed of three structural equations.

Y = a1Yi—1 + a2Yi—2 — b (re — pr) + w (1)
Pt = By +apy_1 + vy (2)
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T = 01yi—1 + Oapi—1 + 0371 + 04y —2 + wy (3)

Equation (1) is a backward looking IS schedule which implies that
equilibrium output is inversely related to the real rate of interest which,
for now, is defined as the interest rate minus the current inflation rate.
Equation (2) is a backward looking Phillips curve which implies that
inflation tends to rise when output exceeds its steady state value. The
lagged values of y in equation (1) and p in equation (2) capture the effects
of partial adjustment mechanisms and govern the dynamic responses of
output and inflation to shocks. Equation (3) explains how the central
bank adjusts the nominal interest rate in response to changes in the
economy. A monetary policy is a set of values for the parameters of the
feedback equation. Structural shocks (u, v, and w) are assumed to have
zero means and to be serially uncorrelated.

The model restricts monetary policy in two ways. First, the interest
rate is a function only of past values of output and inflation which implies
that the central bank can not respond contemporaneously to demand and
supply shocks. Because the state of the economy is completely described
by y¢—1, pt—1, rt—1, and y;_o, adding additional lagged variables to the
right hand side of (3) is superfluous. Second, the values of ; through 6,
are fixed, a sufficient but not a necessary condition for a time-consistent
policy.

For equations (1)—(3), monetary policy is a game against nature be-
cause the parameters of the state transition equation for output and
inflation are constant and independent of monetary policy. The reduced
form y and p may be written as

Zt = AZt_1 + C’I’t + Ut (4)

where Zt = (ye, e, re,Ye-1)'s U = (014,124, 0,0)", myy = d(ue + bvy),
Noy = d(Bug +v¢), d = (1 —b3)~! and where A and C are matrices given
by:

day dba 0 dasy —db

| dBar  da 0 dbas | —dbs
A= 0 0O 0 O = 1
1 0O 0 O 0

We assume that the central bank chooses values for #; through 04
that minimize the loss function

o0
A=Ey)Y 8 ZWZ, (5)

t=0
where W is a (4 x 4) matrix of policy weights that determine the relative
importance to the central bank of its stabilization objectives and where
¢ is the central bank’s time rate of discount. We assume W is diagonal
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with Wy 1 = Wy, Wa o = Wp, Ws 3 = Wr, Wy 4 = 0 where Wy, Wp, and
Wr are the weights assigned by the central bank to stabilizing output,
inflation, and the interest rate. Since what matters is the relative size of
weights, we normalize the sum of the weights to 1.0.

Because the state transition equation is linear and its objective func-
tion is quadratic, the central bank is a linear regulator and the solution
to its problem is given by:

Ty = @Zt,1 + Wt (6)

where © = (01,02,03,04) is the (1 x 4) vector of reaction function coef-
ficients?. The optimal value for © is the limit to the series Or, Op_1,
O7_5, computed with the Matrix Ricatti equations:

Hp = 6TW

Or = — (C'HyC) ™' C'Hp A
Hr_y=68""'"W+ A'Hr (A+COr)
Or_1=—(C'Hr_,C)"' C'Hr A

HT_J' = (ST_jW—i-A/HT_j_l (A+C@T_j_1) (7)

Certainty equivalence holds. The solution to the central bank problem
is the same as the solution to the companion problem where random
shocks are absent from the structural equations (Sargent, 1987). Inspec-
tion of the Ricatti equations confirms that the optimal reaction function
coefficients do not depend on the covariance matrix of the model’s error
terms. McGratten (1990) reports that it is computationally efficient to
compute the optimal 0 by iterating the Ricatti equations to convergence.

For the forward looking model presented in the following section,
the optimal reaction function coefficients are not characterized by the
Ricatti equations and must be computed by numerical minimization of
loss. To see how this can be done, write the reduced form for y, p and r
as a first-order vector autoregression:

X, =GX;_q + ¥, (8)

where X¢ = (Yt, pt, 7, Yt—1, Pt—1,7t-1)"s Pt = (91,92, ¥5,0,0,0)", 1, =
d(ug + bvy — bwy), 0y = d(Bur + v — bBwy), w3, = wy and the (6 X 6)

2Strictly speaking there should not be an error present the reaction function.
Hansen and Sargent (1980) explain how to account for an error in a policy rule. An
adaptation of the Hansen-Sargent argument to the current setting is given by Salemi
(1995, p. 421).
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matrix G is

[ G111 Gio

1 0

I d (a1 — b@l) db (Od — 92) —db@g
G = | dB (a1 —bby) d(a—bB0z2) —db30s

G:

01 0 03
d (CLQ — b94) 0 0
G12 = dﬂ (ag - b94) 0 0
04 0 0

Because they are linear combinations of the serially uncorrelated
structural errors, the ¢;, are serially uncorrelated. The moving aver-
age representation for X is (I — GL)™'®; where L is the lag operator.

Next write A as a function of the forecast error variances of the
model’s variables.

A=E)Y & XWX,
t=0

— i 8¢ trace [WEU (Xtth)]
pary

B oS
= trace (WY _6'Ey (XtXt’)]
t=0

=trace [W Y 6" (Eo (Xi — EoXy) (Xi — EoXy)' + (BoXy) (EoXy)')
t=0

= trace W (M + N)] 9)

where W is a (6 x 6) diagonal matrix with (1,1), (2,2), and (3, 3) element
equal to Wy, W), and W, and with zeroes elsewhere. A involves two
sums:

M= "68"Ey (Xi — EoXy) (X, — EoXy)'
t=0

and

N = Zét (EoX:) (EoX,)'
t=0

M is the discounted sum of forecast error variances of X computed at
time zero when policy is set. N is the discounted sum of quadratic
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terms in expected departures of X from its target. Provided that the
economy is on target at the time when policy is set, N = 0 and the
objective of the central bank is to minimize the part of A that involves
M. If the economy begins away from its target path, the central bank
faces a tradeoff between returning the economy to its target path and
minimizing the weighted sum of discounted error variances. Throughout
this paper we assume N = 0.

The last step is derivation of a convenient expression for M. Let Q
be the (6 x 6) covariance matrix for ®, with Q4 1, the (3 x 3) covariance
matrix for the non-zero elements of @, in the upper left corner and zeroes
elsewhere. Because ®; is serially uncorrelated, we have

Eo (Xi — EoXy) (Xy — BoXy) = Q4 GOG' + G*Q (G?) + ...
+ G (@Y (10
and
M=Q+6[Q+GG +...+6" [0+ GG +...+ G ("]
bo=(1-6"" [Q +8GOG +6°G20 (G2) + .. ] (11)

The direct minimization strategy computes M by iterating the square-
bracket term in (11) to convergence and computes loss as trace (WM).
Alternative techniques for computing M are discussed in Anderson et al
(1996)3.

2  OpPTIMAL PoLicy WiITH A FORWARD LOOKING MODEL.

In this section, we discuss computation of optimal policies for a forward-
looking structural model in which agents have rational beliefs about
future values of output and inflation.

Yo = AEyi1 + arye—1 + a2yi—2 — b (re — Eipry1) + w (12)

Dt = By + a1 Eepry1 + qopi—1 + v (13)

Tt = 01yt—1 + O2pr—1 + 03141 + Oayr—2 + wy (14)

The IS schedule (12) may be obtained by combining a linearized
Euler equation that characterizes a representative household’s optimal

choice between consumption and saving and the market clearing con-
dition for output. As explained by Clarida, Gali, and Gertler (1999),

3The Matlab programs we used to compute optimal reaction function coefficients
are available on request.
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the presence of expected future output in the IS equation results from
the desire of households to smooth consumption. When households ex-
pect higher consumption in the future, they want to consume more in
the present which raises the current level of aggregate demand and, in
equilibrium, introduces a positive association between the current and
expected future levels of output. The presence of lagged output in the
1S equation can be explained by habit persistence or adjustment costs.
Woodford (1996) and Bernanke, Gertler, and Gilchrist (1998) provide
the details. Svensson (2000) adapts the story to an open economy.

If ap is zero, equation (13) is a version of the new Phillips curve
discussed by Gali and Gertler (1999), Clarida, Gali, and Gertler (1999),
and Svensson (2000). The foundation for the new Phillips curve is a
model in which monopolistically competitive firms adjust their prices on
a staggered basis as in Calvo (1983). When it has the opportunity, an
individual firm adjusts its price to maximize expected profits while tak-
ing account of the restriction it faces on future price adjustment and the
expected future prices of its competitors. The staggered-price-setting
story leads to an equation where the current rate of inflation is a func-
tion of the firm’s current level of marginal cost and the expected future
inflation rate. The new Phillips curve results when the output gap (y)
is used as a proxy for marginal cost.

If ap is not zero, equation (13) is a version of the new hybrid Phillips
curve developed by Gali and Gertler to explain inertia in the rate of in-
flation. The foundation is a model with two kinds of firms. The first kind
is a Calvo firm. The second kind is a follower that sets its current price
equal to the average of prices set by competitors in the previous period
plus an adjustment for inflation. The existence of backward looking firms
is sufficient to introduce lagged inflation into the Phillips curve. Alter-
natively, Clarida, Gali, and Gertler (1999) account for lagged inflation
in the Phillips curve by assuming serially correlated supply shocks.

As before, the model includes a fixed-coefficient reaction function (14)
and the central bank chooses coefficient values to minimize expected loss.
Equation (14) is essentially the same as (9) of Fuhrer and Moore (1995)
and (4) of Fuhrer (1997).

Equations (12)—(14) introduce two layers of complexity to the con-
trol problem of the central bank. First, because agents’ actions depend
upon expected future output and inflation, there may be zero or many
reduced form equations for y;, p; and r;. Second, because agents’ beliefs
are rational, changes in © cause changes in the parameters of the state
transition equation. Thus, © and the state transition equation must be
solved for simultaneously.

We address the issues of solution existence and multiplicity using
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the extension of Blanchard and Kahn (1980) proposed by Klein (2000).
Equations (12)—(14) are written in Klein format as

} Zy | 4 ~
A EtytJrl =B Yt + CSt (15)
Eipria Dt

where Z; = (ye, pesre,ye—1)', Si = (ug, v, wy)’, and where A, B and C
are given by:

1.0 0 0 0 0 |
01 0 0 0 O
Y 00 1 0 0 O
A= 00 0 1 0 O
0 0 -b 0 X b
(000 0 0 0 o |
[0 0 0 0 1 0
i o 0 0 0 0 1
B= 01 0, 03 04 0 0
—aq 0 0 —as9 1 0
| 0 —a2 0 0 -8 1
[0 0 0]
0 0 0
~ 0 0 1
C= 0 0 0
-1 0 0
0 -1 0|

In the language of Klein, Z; ; is the vector of backward-looking
variables and y; and p; are the forward-looking variables. The Klein
solution strategy computes a generalized “QQZ” decomposition of A and

B. For any pair of conformable square matrices (fl, B), there exist

orthonormal matrices () and Z and upper triangular matrices S and T
such that

A=Q'SZ B=QTZ QQ =27 =1I

The generalized eigenvalues of the system are the ratios T;;/S;; where
T;; and S;; are the diagonal elements of T" and S. Without loss of gener-
ality, the decomposition matrices can be transformed so that the gener-
alized eigenvalues are arrayed in ascending modulus order (Klein, 2000,
p. 1410).

Provided that the number of stable eigenvalues equals the number of
backward-looking variables, Theorem 5.1 in Klein shows that the unique
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solution for the backward looking variables is given by
Zy = (ZuSH'Tuzy") Zi—1 + LS, (16)

where Z11, S11, and Ty1, are the (4 x 4) upper left blocks of Z, S, and T
and where L is a (4 x 3) matrix given by (5.23) in Klein. For our model,
a unique solution will exist if there are four stable and two unstable
eigenvalues.

Given our assumption that the Fed reacts neither to current values
of output and inflation nor to current structural shocks, we can recover
3., the covariance matrix of structural errors, from (2, the covariance
matrix of reduced form errors with the mapping ¥ = L~1Q (L)™', We
exploit this mapping in the policy experiments described in the following
section.

With the forward-looking model, the central bank control problem
is complicated by the fact that the parameters of the state transition
equation depend on ©. What the central bank may take as fixed is the
structure of the economy and not its reduced form. An algorithm that
the central bank could use to compute the coefficients of its policy rule
has three steps. First, the algorithm chooses a starting value for ©, uses
(16) to compute the reduced form and the resulting G matrix, and then
computes policy loss using (9) and (11). Second, it calculates partial
derivatives of loss with respect to each element of ©. For every change
in ©, G must be re-computed because private agents respond to policy
changes by changing their beliefs and actions. Third, the algorithm
updates © when doing so lowers policy loss provided that the Klein
saddle path restriction is satisfied. The algorithm repeats steps two and
three until it can no longer lower policy loss.

3 MONETARY PoLicy RULES

A monetary policy rule specifies how a central bank will respond to
changes in economic conditions. If the coefficients of the rule are chosen
optimally, the rule is also an explicit commitment to a set of policy
objectives. But why should a central bank adopt commitment in the
form of a fixed coefficient rule?

The case for commitment builds on the realization that policy ef-
fectiveness depends not only on policy actions but also on public un-
derstanding of those actions and public expectations of future actions
(Kydland and Prescott, 1977). Policy is more effective when its future
course is predictable. Lacking a commitment mechanism, the central
bank has an incentive to exploit stickiness in wages and prices to damp
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recessions. The public reacts with inflation expectations that incorpo-
rate future discretionary stimulus.

Commitment permits the central bank to distribute “policy medicine”
over time. For example, suppose the central bank wishes to offset in-
flation that will result from a supply shock. Under commitment, it can
raise interest rates moderately provided that it maintains higher rates
for a period of time. Lacking commitment, a higher initial rate increase
will be necessary because the public doubts that the central bank will
sustain the rate increase.

Optimal commitment need not take the form of a fixed-coefficient
reaction function. It is a state-contingent plan that gives the instru-
ment setting as a function of the history of exogenous shocks. Optimal
commitment is not practical for two reasons. First, it is not feasible
to provide an advance listing of all relevant contingencies (Woodford,
2002). Second, it is difficult for the public to distinguish between dis-
cretion and a complicated contingency rule. Both problems are avoided
when the central bank commits to a fixed-coefficient rule

What form should a fixed-coefficient rule take? Most industrialized-
economy central banks use a short-term interest rate as their control
variable. An obvious example is the US Federal Reserve which sets a
target level for the federal funds rate and controls the supply of bank
reserves to keep the funds rate at the target. Because the Fed is able to
closely control the federal funds rate, it makes sense to treat the funds
rate itself as the policy instrument. In what follows, we limit attention
to fixed coefficient rules that explain how the short-term interest rate
should be adjusted in response to economic conditions.

The most famous examples of interest rate rules are those proposed
by John Taylor which in our notation may be written as:

re = O0ppe + 0y + 0,711 (17)

The original Taylor rule (Taylor, 1993) assigns coefficient values that
Taylor describes as providing both a sensible rule and an accurate de-
scription of Federal Reserve policy: 6, = 1.5, 8, = 0.5, and 0, = 0. The
intuition for the large value of 0, is that the central bank must raise the
interest rate by more than any increase in inflation in order to raise the
real rate of interest, cool the economy, and move inflation back toward
its target. An interesting alternative to the original Taylor rule is a rule
that sets 6, to zero but chooses the values for 6, and 0, that minimize
the loss function of the central bank. Taylor (1999) suggests another
alternative that allows for interest-rate smoothing so that 6,. is positive.
Mc Callum (1997) and others argue that policymakers can react only to
lagged and not to current values of output and inflation. In response,
Taylor (1999) suggests an alternative where lagged values of output and
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inflation replace the current values in (17). In what follows, we will study
the performance of all four forms of the Taylor rule.

The second type of rule we consider is the “full state” rule given
by equation (14). There is one important difference between this rule
and the lagged Taylor rule. Given our model, equation (14) permits the
central bank to respond to all, rather than a subset, of the variables
in the state vector. In theory, equation (14) would permit the central
bank to better respond to business cycle momentum by conditioning the
interest rate both on y;_1 and y;—5. In practice, it is not clear whether
conditioning policy on the full state vector will appreciably improve the
performance of the rule. By comparing the performance of (14) and
the Taylor rules, we can gather evidence on how important it is for the
central bank to correctly specify the state vector.

Woodford (2002) attributes to Goodhart a simple rule where the
central bank responds only to departures of the inflation rate from its
target value. In terms of (17), the Goodhart rule amounts to setting
0y = 0, = 0 and choosing an optimal value for §,. Batini and Haldane
(1998) recommend rules where the central bank reacts to expected future
inflation. Clarida, Gali, and Gertler (1998) also suggest that forecast-
based rules are optimal for a central bank with a quadratic objective
function such as ours. We implement these recommendations with a
version of (17), called the expected inflation rule, where 6, = 6, = 0,
E\[pi+1] replaces p;, and where 6, is chosen to minimize policy loss.

Slope Parameters
A ay as b (65) (6] ﬁ
0.230 1.06 —0.305 0.030 0.600 0.401 .0006
Error Covariances (x107°)

Juu J’U’U U’LUU) O—’lL’U Guw va

1.53 1.38 1.78 —0.172  0.610 0.342

Table 1: Structural Parameter Values Used to Compare Policy Rules

Our policy evaluation is based on estimates of the coefficients of (12)—
(14) obtained by Salemi (2002) and reported in Table 1. Salemi fits
(12)—(14) to quarterly data for the U.S. for 1983-2001 subject to the
restriction that the coefficients of the policy rule minimize a quadratic
loss function. We assume that correlation between the error (w;) in the
policy rule and the errors in the I.S schedule (u;) and the Phillips curve
(v¢) are the result of contemporaneous responses of output and inflation
to w; rather than to the contemporaneous response of policy to struc-
tural shocks. It is then straightforward to back out an estimate of the
structural error covariance matrix from Salemi’s estimate of the reduced
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form error covariance matrix. Our estimate of the structural error co-
variance matrix is also reported in Table 1. We follow the literature
by treating our estimates of structural parameters as fixed and known
values. In future work, we intend to extend our analysis by treating the
parameters as random variables.

Our results are summarized in Table 2 and in Figures 1-6. Table
2 reports the policy rule that achieved the lowest loss level for each
set of policy-objective weights considered. The Table takes the form
of a triangular grid with W), the inflation weight, across the columns
and Wy, the output weight, along the rows?. Nodes on the diagonal
represent cases in which minimal weight was assigned to stabilizing the
rate of interest. Nodes above the diagonal represent cases where higher
weight was assigned to the objective of interest rate smoothing.

Table 2: The Minimum Loss Fixed Coefficient Rule
Legend
E: Expected Inflation Rule
F: Full-State Rule
T: Taylor Rulewith Interest Rate Smoothing
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Our first finding is that the best policy rule is always one of three: the
single-coefficient expected inflation rule (EI), the full state rule (F'S), and
the version of the Taylor rule in which the rate of interest is conditioned
on current output, current inflation, and the lagged rate of interest and

4In some cases when we allowed W), = 1 or W, = 0, our loss-minimization algo-
rithm did not converge. For this reason, we restricted attention to values of W, > 0.05
and values of W), > 0.05.
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the coefficients are chosen to minimize loss (TS). EI is the best rule
either when zero weight is assigned to stabilizing output or when very-
substantial weight is assigned to interest rate smoothing. TS is the best
rule when W, > 0.70 no matter the distribution of weight across the
other objectives. FS is the best rule when 0.25 < W, < 0.35 no matter
the distribution of weights across other objectives. For other values of
Wy, the optimal rule can be any of the three depending on the weight
assigned to the other two objectives.

There are two interesting implications of our best rule findings. First,
a simple rule in which the rate of interest is made a function only of
the expected rate of inflation can be the best fixed-coefficient policy
rule but only in the case where the central bank cares nothing about
stabilizing output or greatly dislikes variability in the rate of interest.
When even modest weight is assigned to output stability, FS produces
lower loss than EI. Second, the advantage conferred upon the TS rule
of conditioning the rate of interest on current rather than past values
of output and inflation is valuable only when output stabilization is the
dominant objective. In most nodes along the diagonal of the Table,
where interest rate stability is given little weight, FS performs better.
If the Federal Reserve considers inflation stabilization to be its primary
objective and output stabilization to be an important but secondary
objective, it would be well advised to adopt an interest rate rule of the
form of (14).

Figures 1-6 provide quantitative evidence on the relative performance
of the rules. Figure 1 is a graph of the ratio of policy loss for the original
Taylor rule to the policy loss for the full state rule. Given that Taylor
assigned values to the coefficients on a priori grounds that did not include
minimizing policy loss, it is not surprising that the ratio always exceeds
one. What is surprising is how poor the relative performance of the
original Taylor rule can be. Taylor-rule loss is much higher when W,
is small and when W, is near zero. However, it is very interesting that
the original Taylor rule performs almost as well as the full-state rule
when W, = 0.80 and W, = W,. = 0.10 which in our view is not a bad
guess about the preferences of the Federal Reserve since the end of the
monetarist experiment.

Figure 2 plots the ratio of policy loss for the optimized Taylor rule
to policy loss for the full state rule. Since this Taylor rule conditions the
interest rate on current values of output and inflation, Figure 2 provides
a referendum on the value of conditioning policy on current rather than
lagged economic variables. The figure shows that the optimized Taylor
rule performs slightly better when W, is very small and when W,, > 0.70.
On the other hand, the optimized Taylor rule performs relatively poorly
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Figure 1: Policy Loss Ratio: Original Taylor Rule/Full-State Rule

when interest rate smoothing is important and when W, is large. This
later finding is not surprising since the optimized Taylor rule does not
allow the interest rate to be conditioned on its lagged value.

Figure 3 shows compares the performance of the full state rule to that
of the version of the Taylor rule that allows for interest rate smoothing.
Again, the coefficients of the Taylor rule are those that minimize loss.
The most striking thing about the figure is that except for extreme values
of W, the performance of the two rules is quite close. This Taylor rule
continues to have an advantage when W, is very small; the full state rule
has an advantage when W,. > 0.10. It appears that conditioning policy
on current values of output and inflation involves a tradeoff between the
benefits of more current information and the costs of a more volatile
interest rate. Figure 4 compares the original Taylor rule to the Taylor
rule with coeflicients on output and inflation chosen to minimize loss. It
confirms one of the conclusions supported by Figure 1. The optimized
Taylor rule always performs better, but the performance of the two rules
is nearly the same when W), is large and W,, and W, are of modest size.

Figure 5 compares the Goodhart rule with the full state rule. The
Goodhart rule is the simplest interest rate rule we consider since it ad-
justs the nominal rate of interest only in response to departures of the
current inflation rate from target values. The figure shows that the
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Figure 2: Policy Loss Ratio: Optimized Taylor Rule/Full-State Rule

Goodhart rule never performs better than the full state rule despite its
information advantage. The relative performance of the Goodhart rule
is better when W, is very small and, particularly, when W), is very large.
However, the full state rule performs much better for large values of W,
and for large values of W, combined with modest values of W,. We
conclude that the central bank of an economy well described by our
model ought not adopt a Goodhart rule. Figure 6 tells a similar story
about the performance of the rule in which the nominal rate of interest
responds only to changes in the current expectation of future inflation.
The backward looking full state rule outperforms this forward looking
rule unless a very high weight is placed on the interest rate stabilization
objective. The full state rule performs better when W, is sizeable even
if W, is very small. A central bank that cares mostly about stabilizing
inflation and is not too concerned about interest rate stability would do
better adopting the full state rule.
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Figure 3: Policy Loss Ratio: Taylor-Smoothing Rule/Full State Rule

4  OPTIMAL COMMITMENT AND DISCRETION

In the previous section, we evaluated the economic performance of a set
of fixed-coefficient policy rules. In this section, we compare the per-
formance of our rules to that of two alternatives which Clarida, Gali,
and Gertler (1999) call “unconstrained optimal commitment policy” and
“discretionary policy.”

The unconstrained optimal commitment (commitment) policy is fun-
damentally different from fixed-coefficient rules. Rules “live” in the space
spanned by the current state vector for an economic model. The com-
mitment policy depends on the entire history of the state vector dating
back to time zero when policy is set. At time zero, the central bank eval-
uates all possible outcomes, decides how to react to each, and promises
to stick with the chosen set of reactions.

To explain how we compute the commitment policy, we modify our
notation to conform to that of Soderlind (1999) and write the constraint
facing the central bank as:

_ Zit1 | % _ Syt
Al Eeyer1 | =B | ye | +Cr { t0+ } (18)
Eipiy1 Dt
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Ratios

Figure 4: Policy Loss Ratio: Original Taylor Rule/Optimized Taylor Rule

where Z; is redefined to include the structural errors from the IS equa-
tion and Phillips curve so that Z; = (u¢, ve, y¢—1,Pt—1,7¢—1,Yt—2) , where
St = (ug,v)’, and where the elements of /Nl, B and C are obtained in a
straightforward way by re-writing the structural equations in the above
format. There are two essential differences between (15) and (18). First,
the structural shocks are now considered to be part of the state vector
permitting the interest rate under commitment to depend on current
and past values of those shocks. Second, the interest rate is assumed to
exactly equal the value specified by the commitment policy so that w; ,
the interest rate shock, is assumed to be zero.

To characterize the commitment policy, we adopt the approach of
Currie and Levine (1993) and formulate the LaGrangian function:

Jo = Eo i &'
t=0

where X; = (Z}, Et(yi+1), Et(pi+1))" and where, g, = (S;,0)". We com-
pute the commitment policy by using Klein’s method to solve simulta-
neously a system of equations comprising (18) and the first-order con-
ditions for the optimization problem. To compute the value of the loss
function associated with the optimal policy we apply equation (4.15) of

(19)

Wy (p)* + Wy () + W, (1)
+2X 11 (BXt +Cry+¢e¢ — AXt+1)
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Figure 5: Policy Loss Ratio: Goodhart Rule/Full-State Rule

Ljungqvist and Sargent (2000)°.

The second alternative policy design we consider is optimal discre-
tion. What distinguishes discretion from commitment is that current
and past policy decisions in no way constrain future decisions. Un-
der discretion, the central bank re-optimizes its loss function (5) every
period taking private sector expectations as exogenous. Under commit-
ment, the central bank optimizes only in the inaugural period and treats
private agent expectations as endogenous and changing with policy. Un-
der commitment, the central bank simultaneously chooses paths for the
interest rate and private sector expectations subject to the constraints
imposed by the economic structure. Under discretion, the central bank
lacks credibility and has no control over private agents expectations. An
alert private sector adjusts expectations according to actual policy deci-
sions. In the context of our model, private agents predict central bank
decisions by solving the central bank loss minimization problem while
recognizing that the bank is free to change policy. The outcome of the
“game” played by the central bank and private agents is an equilibrium
for which the central bank has no incentive to change policy although it

5For the detailed description of the algorithms used in these computations, see
Givens (2002).
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Figure 6: Policy Loss Ratio: Expected Inflation Rule/Full-State Rule

has the ability to do so.
To characterize discretion, we adopt the same notation used for com-
mitment and formulate the following Bellman equation.

N = ZViZy +dy = Wy (p)? + W, ()" + W, (1) +
6Et (Z£+1W+1Zt+1 + dt+1) (20)

The solution under discretion involves minimizing (20) over choice of
r¢, where V; is a 6 X 6 positive definite, symmetric matrix and d; is a
scalar. Both values are initially undetermined and are found by solving
for the fixed point of a particular system of equations. The equations
we use are those explained in detail in Soderlind (1999)¢. The optimal
policy is a fixed coefficient feedback rule that relates the nominal interest
rate to the current state of the economy. Unlike the commitment policy,
the rule under discretion will depend only on the current state vector
and not on its entire history.

Figure 7 reports the ratio of policy loss for discretion relative to op-
timal commitment. To compute loss, we use the parameter values from

6For the details, see Givens (2002).
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Figure 7: Policy Loss Ratio: Discretion/Commitment

Table 1, assume that variance of the error from the interest rate equa-
tion is zero, and then implement the programs described earlier in this
section. Several conclusions are warranted. First, loss computed un-
der discretion always exceeds loss computed under commitment. This
is no surprise. Second, provided that W, is very small, the loss ratio is
about the same for all values of W,,. (Recall that W), + W, + W, = 1.0)
We find this result surprising — we expected that commitment would
do relatively better when inflation stabilization was the more important
objective. Third, the relative performance of discretion worsens as more
weight is placed on interest rate stability. This occurs because the in-
terest rate is more volatile under discretion than under commitment.
Fourth, for a given W, the relative loss ratio first rises and then falls
with increases in W,,. For a given value of W), , the loss ratio increases
monotonically as W, rises and W, falls.

Figures 8 and 9 compare loss under optimal commitment and loss
under discretion with loss under the full state fixed coefficient rule de-
scribed in section 3. We use the full state rule for comparison because
it was the lowest-loss rule for a wide variety of policy objectives. In
order to make a valid comparison across these three policy designs, we
re-computed optimal full state coefficients and loss values under the as-
sumption that o2, the variance of the error in the interest rate equation,
is zero.
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Figure 8: Policy Loss Ratio: Discretion/Full-State Rule

Figure 8 shows that loss associated with the full state rule exceeds
loss associated with discretion whenever W, is small so that interest rate
stabilization is relatively unimportant. As W, increases, the relative
performance of the full state rule improves. The full state rule produces
lower loss than discretion when W, > 0.35. This is consistent with
our earlier finding that the ratio of loss under discretion to loss under
commitment is largest when interest rate stability is relatively important.
Our finding that discretion can outperform the full state rule should be
viewed in context. Discretion outperforms the full state rule for a subset
of policy weights quite similar to the subset for which the optimized
Taylor rule outperforms the full state rule.

Figure 9 confirms that loss associated with the full state rule always
exceeds loss associated with optimal commitment. The full state rule
falls furthest short of the commitment potential when W, is small. For
W, = 0.05, the ratio of loss under commitment to loss under the full state
rule is about 0.80 when W), is 0.90 and fall steadily as W), increases. The
ratio is 0.99 when W), is .90. Thus, as inflation stabilization becomes a
more important objective, the full state rule, despite conditioning the
rate of interest on lagged values of output and inflation, very nearly
achieves the full commitment potential.
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Figure 9: Policy Loss Ratio: Commitment/Full-State Rule

5 CONCLUDING REMARKS

We conclude by repeating our key findings. First, computation of op-
timal feedback parameters of a fixed-coefficient policy rule requires the
researcher to account for the effects of changes in those coefficients on
private agent expectations and reduced form parameters. We accomplish
this complicated task with a Matlab program that marries Klein’s solu-
tion algorithm with an iterative strategy for solving a Sylvester equation.
Second, of the half dozen fixed coefficient rules we studied, one of three
always performs best. The rule where the interest rate responds only to
the current expectation of future inflation performs best when inflation
and interest rate stability are the sole objectives of policy. We find it
remarkable that a single-parameter rule could ever outperform all the
other rules we consider. As output stabilization becomes a more impor-
tant objective, one of two rules dominates. The full state rule, where
the interest rate varies with lagged values of output and inflation, is the
best rule for about half of the weight configurations that we consider,
especially for those where 0.25 < W, < 0.45. The version of the Tay-
lor rule that allows for interest rate smoothing and that has coefficients
chosen to minimize loss is the best rule whenever W, > 0.70. Third, the
difference between policy loss under optimal commitment and policy loss
under discretion ranges between three and nine percent, with the great-
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est disparity observed when interest rate stability is relatively important.
Fourth, discretion can result in lower loss than commitment with a fixed
coefficient policy rule. Fifth, when inflation stability is the dominant
objective of the central bank, loss under the full state rule is nearly as
small as loss under optimal commitment and substantially lower than
loss under discretion. When inflation stabilization is the primary ob-
jective of the central bank, fixed coefficient rules can nearly achieve the
lowest loss possible.
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