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A. Symmetric Equilibrium Conditions
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A symmetric competitive equilibrium is a set of processes {ct, x¢, hy, wi, mcy, Vi, ye, T 520
that satisfies (A.1)-(A.8), given a sequence of nominal interest rates {R;}:°,, initial condi-

tions c¢_1, and exogenous stochastic processes {ay, 2 }52, that satisfy (A.9)—(A.10).
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B. Quadratic Welfare Criterion

The welfare criterion given by equation (10) in the manuscript corresponds to a second-
order Taylor series approximation of the representative agent’s expected lifetime utility. In

equilibrium, expected lifetime utility can be written as
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A quadratic expansion of the first term in the infinite sum yields
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where ||e]| is a bound on the amplitude of the exogenous shocks, O(]|¢||®) are terms in the
expansion that are of third order or higher, and ¢.i.p. collects terms that are independent of

monetary policy. In deriving (B.1), I have made use of the following result:
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where for any variable X;, X, = log(X;) — log(X) and X is the steady-state value of X;.
The equilibrium equation for habit-adjusted consumption, z; = ¢; — bey_1, approximated

to a second order is
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Substituting this into (B.1) gives
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The discounted sum of (B.2) computed over all future periods can be written as
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Here I have used the result that
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The consumption terms dated before period zero are treated as initial conditions and are
therefore independent of monetary policy.

A quadratic expansion of the second term in the agent’s lifetime utility function gives
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Now in equilibrium, the production function becomes 1y, = z;h;, which yields the exact

relationship ¢, = 2; + hy. Substituting this expression into (B.3) gives
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Discounting and summing (B.4) over all future periods then gives the following
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In order to express the welfare criterion in terms of output rather than consumption,
it is helpful to consider the aggregate resource constraint y = ¢, + (a/2) (my /7 — 1)%y,. A

second-order approximation of this expression yields
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Expected lifetime utility can then be written as
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As explained in section 3 of the manuscript, the labor-income tax rate 7 appearing in
the household’s period budget constraint is calibrated so that there are no net distortions

from market power or consumption externalities in the steady state. The tax rate that



produces this result is given by 7 = 1 — (1/mc)(1 — b). Under these conditions, one can
show that the steady-state consumption and labor allocations are Pareto efficient and satisfy
(1= Bb)/(1 —b))x'=7 = KX Tt follows that (B.6) simplifies to
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The next step is to transform the second-order terms in g; and Z; into terms involving
the “gap” variables, namely, the output gap 7, — y; and the habit-adjusted gap 2, — Zy.
The variables y; and z§ are the Pareto efficient levels of output and habit-adjusted output,
respectively. These correspond to allocations that solve the benevolent planner’s problem.

In solving for the Pareto efficient allocations, the planner maximizes lifetime utility sub-
ject to aggregate technology and feasibility constraints alone. The existence of price ad-
justment costs and market power do not constrain the planner’s decisions. Moreover, all
consumption habits are internalized in the course of optimization. In such an environment,
efficiency requires that the marginal rate of substitution between work and habit-adjusted

consumption equal the marginal product of labor, that is
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The first-order approximation of (B.8) can be written as
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Multiplying both sides of (B.9) by —2y, yields
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where I have used the fact that —2x9:9¢ = x (y: — gjte)Q — X9 — ngtez.

Finally, note that 22 can be written as
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Substituting (B.10) and (B.11) into (B.7) leads to the following expression for welfare:
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Equation (B.12) can be simplified further after recognizing that
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where I have used the fact that ; = (1/(1 — b)) (g; — byi—1). Discounting and summing the

right-hand-side over all future periods and taking conditional expectations yields
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Substituting (B.13) into (B.12) then gives
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Finally, one can show that
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Using (B.15) to cancel terms in (B.14) leads to the following expression for welfare:
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The quadratic approximation given by (B.16) is identical to the welfare criterion (10) dis-

played in section 3 of the manuscript.



C. Inputs for Computing Quasi-Commitment

Here I illustrate how to map the structural equations of the linearized deep habits model
into companion form. The resulting matrix definitions can then be used to find a numerical
solution to the government’s quasi-commitment problem.

For sake of clarity and completeness, I begin by restating the equations:

Ty = Eylp — (1/0)[Rt = Eiftin — (1= pa)ay), (C.1)
T = (1/(1=10))g: — (b/(1 = b))fe—1, (C.2)
me, = 0@+ x% — (14 x)2, (C.3)
0 = BbEb — (R — Ei)] — [n(1 = b) — (1 — Bb)]micy, (C.4)
7y = BEi + (1/Q)[§e — 0 — 3], (C.5)
Ty = PbEay, — (1/0)[(1 = Bb)(xg; — (L4 X)2) — Bb(1 — pa)ay), (C.6)
zp = (1/(1=0))g; — (b/(1 = b))g_y, (C.7)
ay = pPali—1 + Eay, (C.8)
2 = P11+ Eay (C.9)

Define x; = [a; 2 ;-1 U 4] the (4 x 1) vector of date-t predetermined variables, X; =
[z 9 micy 0y 71 25 g5 ] the (7 x 1) vector of date-t non-predetermined variables, e; = [g,¢ €,.4)
the (2 x 1) vector of i.i.d. exogenous shocks, and i; = R, the policy instrument. Stacking
(C.1)—(C.9) in companion form produces the vector difference equation
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where matrices A and B are given by
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and where r; = 1+ 8b% + x(1 — 8b)(1 — b)/o and Ky = (1 — Bb)(1 — b)(1 + x)/o. Similarly,

matrices N and G are given by
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In constructing A, I use the notation e;, j = 0,1,...,11, which denotes a 1 x 11 row vector
with element j equal to one and all other elements equal to zero (for j =0, e; = 01x11).

Recall from section 5 of the manuscript that the approximate welfare criterion (10) or
(B.16) can be written as Vo &= —(1/2)h!™xEy Y72, B'L:, where
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In equation (C.10), W is a symmetric, positive semidefinite matrix whose elements contain



the weights attached to the inflation and output gap stabilization objectives. Specifically,
W is given by ) )
€o
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x(es — e11)
€o
€o
ey
(0(1=0)/(1 = Bb))(e10 — €s)
x(ei — es)
€0

where this time e; (for j = 0,1, ...,12) denotes a 1 x 12 row vector with element j equal to

one and all other elements equal to zero (for j =0, €; = 01412).

D. A Model with Aggregate Consumption Habits

D.1. Households
There is a unit measure of households, indexed by j, that gain utility from consuming a

composite of differentiated goods c¢;+ and lose utility from supplying labor A, ;. The composite

1 1/(1—1/n)
Cj,t = |:/ Cj7t(i)11/ndi:| y
0

where ¢; (i) is consumption of good i by household j. The parameter n > 1 determines the

good takes the form

intratemporal substitution elasticity across consumption varieties.
Every period household j minimizes folPt(i)ch(i)di subject to the above aggregation

constraint. First-order conditions imply demand functions of the form

cji(i) = (P;g))_n Cjts
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where P,(7) is the price of good i and P, = [fo Pt(z)k"dz} is the price of ¢;;.




Intertemporal spending decisions are made with reference to a lifetime utility function
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where Ej is a date-0 expectations operator and 8 € (0,1) is a subjective discount factor.
Notice the period utility function is defined over sequences of consumption c; relative to an
external habit stock bc;_1, where ¢;_1 = fol cjir—1dj and is treated as given in the course of
maximization. The parameter b € (0,1) measures the strength of external habit formation.
Parameter o > 0 governs the intertemporal elasticity of consumption and y > 0 the Frisch
elasticity of labor supply. Preference shocks a; affect all households symmetrically and follow
the autoregressive process log a; = p,loga;—1 + €44, With |p,| < 1 and g, ~ i.i.d. (0, 02).
Households enter each period with riskless one-period bond holdings Bj; ; that pay
a gross nominal interest rate R; ; at date t. They also provide labor services to firms
at a competitive nominal wage rate W; and, after production, receive dividends ®,, from

ownership of those firms. The period-t budget constraint is
Picjy + Bjy < Ry1Bjy 1 + (1 = 1)Wihj, + @54 + Ty,

where 7 € (0,1) is a labor-income tax rate (calibrated to erase the steady-state distortions
arising from market power and consumption externalities), and 7, is a lump-sum government
transfer. Sequences {c;j+, hjt, Bji}i2, are chosen to maximize Vj, subject to the budget
constraint and a no-Ponzi requirement, taking as given {a;, c;—1, P, Ri—1, Wi, @54, Tj1 152,

and initial assets B; _;. The first-order conditions satisfy

| = BB, Ry a4 (Cj,t — th—1>U7
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where w, = W, /P, is the real wage and m, = P,/P,_ is the gross inflation rate.

D.2. Firms
Good i is produced by a monopolistically competitive firm with technology (i) = zh (i),
where y;(7) is the output of firm ¢ and h;(4) its use of labor. Technology shocks z; are common

to all firms and follow log z; = p, log 2,1 + €., with |p,| <1 and e, ~ i.i.d. (0,02).



Firms maximize the present value of profit subject to

a market demand curve obtained by integrating c;,(i) over all j € [0, 1] households. Firms
stand ready to meet demand at the posted price, so z:hi(i) > ¢(i) for all t > 0. Individual
prices may be reset every period, but at a cost. Specifically, firms pay adjustment costs of
the form (o/2) [P,(i)/mPi—1 (i) — 1]° 3, measured in units of aggregate output y, = fol ye(7)di,
anytime growth in P;(7) deviates from the long-run mean inflation rate 7. The constant a > 0
determines the size of price adjustment costs.

The Lagrangian of firm ¢’s maximization problem is

«

=5 o {Pt(z’)ct(z’) Wik~ & {—

£ 2
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Sequences {h(i), ¢ (i), Py(i)}:2, are chosen to

+Pomeg (i) [z (1) — ¢(2)] + Poy(4)

where ¢, is a stochastic discount factor.!

maximize £, taking as given {qo+, Wi, Pr, U, 21, ¢t 72, and the initial value P_1(7). The first-
order conditions are
wy = mey(i) 2,
Py(i)

v (i) = e mey(),

(i) = ma (i) (Pt(i))nl G +a (ﬂ - 1) D

P, WPt—l(Z) 7TPt—1(Z)
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— ap % ) St
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D.3. Government

The government has a dual role in the model. First, it taxes labor income and remits the
proceeds to households as lump-sum transfers, so TW;h;, = T;, for all j € [0,1]. Second,
it conducts monetary policy by adjusting R;. Policy outcomes are optimal in that they

maximize (under commitment or discretion) a second order approximation to Vy = fo Viodj.

n equilibrium the stochastic discount factor satisfies qo +P; = Bas(c; — beg—1) 7.
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D.4. Competitive Equilibrium

In a symmetric equilibrium households make identical spending and labor supply choices
and firms charge the same price. It follows that subscript j and argument i can be dropped
from the constraints and optimality conditions. Equilibrium also requires imposing relevant
market-clearing conditions. Balancing the supply and demand for labor means fol hjdj =
fol hi(i)di = hy for t > 0. In product markets, supply of the final good equals demand from
consumption plus resources spent on adjustment costs, so y; = ¢; + (a/2)(m /7 — 1)%y,.

For completeness, the full set of symmetric equilibrium conditions are

hi(l.?' = wt(l - 7—)7
@, = BRE; (army/mi)
ry = ¢ —beq,
Wy = MCtz,
vy = 1—mc,
—0
o = e ta <E - 1) <ﬂ> y; — afE, (atﬂait;l) (7”“ _ 1) (Wt+1> Yoo,
T T ATy ™ T
y = zih,

Yy = ¢+ (af2)(m/m — 1)y,

where I have defined x; = ¢;—bc;_1 the level of habit-adjusted aggregate consumption in equi-
librium. Formally, a symmetric equilibrium is a set of processes {c;, x¢, hy, we, mey, v, ye, T 12,
that satisfies the above equations, given a sequence of nominal interest rates { R;}$2,, initial

conditions c_y, and exogenous stochastic processes {ay, 2 }52,.

D.5. Log-linear Approximation
To examine the welfare implications of the model with aggregate consumption habits, I first
take log-linear approximations of the symmetric equilibrium conditions around the deter-

ministic steady-state equilibrium. After substituting out consumption, work hours, and the

11



real wage, the system of linear expectational difference equations becomes

B = By — (1/0)|[R — Eifpr — (1 — pa)a), (D.1)
T = (/1 =0)je — (b/(1 = b)), (D.2)
mey = oZy+ x0 — (1+ X)%, (D.3)
v = —(n—1)mg, (D.4)
. = BEm— (1/a)n. (D.5)

To a first-order approximation, the aggregate demand component of this model, charac-
terized by (D.1)-(D.3), is identical to the demand-side component of the deep habits model
given by equations (M-1)—(M-3) in section 3 of the manuscript. In other words, deep and ag-
gregate consumption habits have identical implications for aggregate demand in equilibrium.
Where the two models differ is with regard to aggregate supply. Unlike the deep habits
specification, aggregate consumption habits have no direct impact on inflation dynamics.
Substituting (D.4) into (D.5) yields 7, = BEymi1 + ((n — 1)/a) mic, which is the canonical

New Keynesian Phillips Curve linking inflation to current and expected future marginal cost.
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