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1 Introduction

Central banks face the difficult task of conducting monetary policy in situations where real-

time uncertainty about the state of the economy is pervasive. Uncertainty of this kind has

two sources. One is the “noise” contained in preliminary measures of economic activity, such

as output and inflation, that are used by policymakers to forecast the state. Data on these

variables are continually revised over time, so the true values are not known until long after

they are first released and policy decisions have been made (e.g., Croushore and Stark, 2001).

A second source of uncertainty concerns estimates of economic concepts that are not directly

observable but still play a vital role in the policy process. The natural rates of output and

unemployment are prominent examples. Forming inferences about these variables requires a

statistical model that specifies how they are related to observed data. Given the uncertainty

over such models and in published data, it is common for real-time estimates of the natural

rates to be way off the mark (e.g., Kuttner, 1994; Orphanides and van Norden, 2002).

Because monetary policy depends on the central bank’s current perception of the state

of the economy, correctly interpreting historical policy behavior demands that one account

for the type of informational limitations described above. Athanasios Orphanides was one

of the first to point this out in a series of influential papers (e.g., Orphanides, 2001; 2002;

2004) that questioned the value of policy analysis based on data and concepts other than

what policymakers actually encountered at the time decisions were being made. Using the

simple rule proposed by Taylor (1993) as an example, Orphanides (2001) showed that policy

recommendations implied by real-time data are often at odds with those obtained from ex

post revised data. Moreover, estimating such rules using only the latest information can

obscure one’s view of the way monetary authorities reacted to economic conditions as they

appeared at the time. To identify the policy motives of the past, it is thus imperative to

understand what the central bank was seeing at the moment their policies were implemented.
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The papers written by Orphanides belong to a large literature that uses the Taylor rule

as a means of describing historical monetary policy (e.g., Clarida, Gaĺı, and Gertler, 2000).

Yet, some have argued that these rules are hard to interpret because the feedback coefficients

do not map uniquely into the “deep” parameters that represent the preferences of the policy

authority. The key insight is that Taylor-type rules can be derived endogenously by solving

an explicit optimization problem for the central bank (e.g., Svensson, 1997). It follows that

estimated policy-rule coefficients may depend on the various weights in the central bank’s

objective function in addition to the parameters characterizing the structure of the economy.

Disentangling the two requires an econometric procedure that specifically acknowledges the

policymaker’s optimization problem during the course of estimation (e.g., Favero and Rovelli,

2003; Ozlale, 2003; Dennis, 2006; Salemi, 2006). The usual strategy adopted in this literature

is to estimate a model of private behavior subject to the restriction that monetary policy is

optimal. Such an exercise enables one to obtain joint estimates of the structural parameters

and the weights in the policy objective function that identify central bank preferences.

To date, most of the papers that try to explain policy as the outcome of an optimization

problem assume that private agents and the central bank are perfectly informed about the

state of the economy. Since there is no conflict between real-time and revised concepts under

perfect information, the models featured in this literature are typically estimated with ex post

revised data. However, this type of analysis appears as vulnerable to the Orphanides critique

as analyses based on the Taylor rule, which treats central bank behavior as a primitive rather

than the product of rational optimization. By endowing agents with full information and

ignoring the intrinsic uncertainty of real-time data, the researcher is viewing history through

a distorted lens. Attempts to validate such a model empirically may produce biased estimates

of the economic structure and, in particular, the policy objective function.

Our paper continues the line of research dating back to Salemi (1995) that estimates
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the parameters of the central bank’s objective function.1 However, we break from standard

practice by utilizing a model in which agents only have partial knowledge of the state. Every

period private agents and the central bank derive an optimal estimate of the state vector

by filtering information contained in a small set of noisy indicators. The central bank then

implements an optimal policy conditional on its current beliefs while the private sector forms

expectations consistent with the chosen policy. Thus in our model economic decisions depend

on real-time perceptions of the state instead of the actual state as would be the case under

complete information. The optimal-filtering (signal-extraction) mechanism also provides a

way to track the evolution of these perceptions through time. Orphanides (2004) contends

that both features are essential for correctly identifying historical policy objectives.

Estimation is performed on a simple new-Keynesian model of output-inflation dynamics.

The concept of natural output has a dual role; it appears as an exogenous forcing variable

in the Phillips curve and as the target for real output in the policy objective function.

Regarding the information structure, we assume that private agents and the central bank

observe noisy current-period measures of output growth, inflation, and the unemployment

rate, the latter of which is linked to the model through an Okun’s Law relationship. Using

the methodological approach outlined in Svensson and Woodford (2003), both sets of agents

obtain an efficient estimate of the state vector by means of a Kalman-filter updating equation.

Given its estimate of the state, the central bank sets the nominal interest rate to minimize

a weighted quadratic loss function under discretion. The arguments in the loss function

include deviations of inflation and output from target and changes in the interest rate.

To estimate our partial information model, we employ a data set that combines real-time

and ex post revised data spanning the Federal Reserve chairmanships of Volcker, Greenspan,

and Bernanke. Using real-time data to estimate the loss function is a departure from much of

1Early examples in this literature are Cecchetti, McConnell, and Perez-Quiros (2002), Dennis (2004),
Söderström, Söderlind, and Vredin (2005), and Cecchetti, Flores-Lagunes, and Krause (2006). More recent
contributions include Givens and Salemi (2008), Ilbas (2012), and Givens (2012).
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the extant literature that relies exclusively on revised data (e.g., Dennis, 2006; Ilbas, 2012).

In those studies omitting noisy real-time data makes sense because agents are assumed to

know the true value of the state at each point in time. By contrast, our model recognizes a

distinction between the true state variables and the group of indicators that agents observe

in real time. The consistent approach here is to identify the former with ex post revised data

but the latter with data that was actually available when past decisions were made.

In short, the goal of this paper is to underscore the empirical consequences of placing

information constraints on a model with optimal monetary policy. To fully achieve that

goal, we take a page from the previous literature by estimating a second model that differs

only in its assumption that agents have complete knowledge of the state of the economy.

We then report those estimates alongside our benchmark estimates obtained under partial

information. Comparing results across the two models clarifies the effect that informational

assumptions have on estimates of the structural parameters and loss function weights.

Our findings suggest that uncertainty about the state has a major impact on inferences

concerning the output objective in the policy loss function. Under partial information the

weight on the output gap term (i.e., the gap between actual output and the natural rate)

relative to inflation exceeds one-fourth and is statistically significant. Under complete infor-

mation the relative weight on output gap stability is small and not significantly different from

zero, echoing results from previous studies that disregard informational frictions altogether.

Estimates of the policy equation reveal that conflict between fitting the observed interest

rate path and satisfying the restrictions imposed by discretionary policy is greatly dimin-

ished in the partial information version of our model. We base this conclusion on various

tests of the hypothesis that policy was optimal during the sample period. Specifically, we

employ a likelihood ratio test as well as the Bayesian information criterion and a related

pseudo-posterior odds ratio to assess the fit of the optimal-policy model compared to a

nested alternative that leaves the policy equation free. Results from all three show that
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the discrepancy between the two policies is considerably smaller in a partial information

framework, implying that optimal and historical monetary policy are more easily reconciled

under partial information than under complete information.

A key step in establishing the validity of our partial information mechanism is checking

whether the uncertainties are sufficient to generate meaningful perception errors over time.

If the estimated model tells us that real-time perceptions of the state were never far from

the true state, then accounting for partial information may offer scant improvement over full

information in efforts to identify historical policy motives. We perform this check by esti-

mating past output gap and inflation misperceptions with the Kalman smoother. Estimates

reveal that beliefs about the state were at times very different from reality, particularly with

regard to the output gap. Moreover, variance decompositions show that output gap mis-

perceptions were mainly driven by shocks to the natural rates of output and unemployment

while inflation misperceptions were largely the result of cost-push shocks and indicator noise.

1.1 Related Literature

Our paper is part of a growing literature that incorporates partial information into a new-

Keynesian framework. Dotsey and Hornstein (2003) and Coenen, Levin, and Wieland (2005)

assess the information content of money using models calibrated to US and euro area data,

respectively. Both studies find that money provides little information about the state of the

economy that is useful for stabilization policy. Ehrmann and Smets (2003) and Cukierman

and Lippi (2005) characterize optimal policy under conditions where the true value of natural

output is unknown. The information problem causes agents to make systematic prediction

errors when estimating the output gap, which in turn biases the policy setting away from

a full information benchmark.2 Dellas (2006) and Collard and Dellas (2010) show that

2Aoki (2003) studies optimal monetary policy under similar conditions and finds that partial information
justifies a more cautious response to noisy indicators.
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mismeasurement of the state along with a forecasting rule derived from the Kalman filter

helps the new-Keynesian model produce an inertial response of inflation to monetary shocks.

Collard, Dellas, and Smets (2009) use Bayesian methods to estimate a DSGE model with the

same type of information structure. They find that partial information acts as an endogenous

propagation mechanism and improves the fit of the model in terms of log likelihood.

The paper that is perhaps closest to ours is Lippi and Neri (2007). They too estimate

a model with partial information and optimal discretionary policy, but our analysis differs

from their’s in many important ways. First, we estimate our model with US data, whereas

Lippi and Neri estimate on euro area data. Second, Lippi and Neri only report estimates

under partial information because their main emphasis is on comparing the signal quality of

real money balances and unit labor costs. Our task is to examine the implications of partial

information per se, so we also consider a complete information model and report the two sets

of estimates side-by-side. Third, Lippi and Neri estimate their model with ex post revised

data alone. We use both real-time and ex post revised data simultaneously during estimation.

Exploiting the information present in real-time data should yield a more accurate depiction

of historical policy, as argued by Orphanides (2001) and Croushore (2011).

Few studies in this literature employ real-time data during the course of estimation. Neri

and Ropele (2011) is a recent example of one that does. They apply Bayesian methods

to estimate a new-Keynesian model with partial information à la Svensson and Woodford

(2003). There are two key areas in which our paper departs from their’s. First, Neri and

Ropele represent policy with a Taylor rule and use the estimated model to compute the im-

plied output gap-inflation volatility tradeoff facing the European Central Bank. We restrict

policy to be the outcome of optimal discretion in order to recover the weights in the Federal

Reserve’s loss function. Second, Neri and Ropele estimate partial and complete information

versions of their model using either ex post revised or real-time data separately. They do

not consider a version that uses both types of data at the same time.
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2 An Empirical Model with Partial Information

This section presents a new-Keynesian model with partial information and optimal discre-

tionary policy. We define partial information as the inability of economic agents to perfectly

observe the state. Thus the information problem is restricted to items in the state vector;

the model and its parameters are known with certainty. Each period agents update their be-

liefs with the arrival of new information (i.e., data) on the indicator variables, which include

measures of output growth, inflation, and the unemployment rate. The economic structure

consists of an IS equation, a Phillips curve, a stochastic process for natural output, an Okun’s

Law relationship, and a loss function describing the stabilization goals of monetary policy.

2.1 The IS Equation

The aggregate demand component of the model is characterized by an IS equation

yt = ϕyt+1|t−1 + (1− ϕ)[βyt−1 + (1− β)yt−2]− σ(it−1 − πt|t−1) + εy,t, (1)

where yt is real output, it is the one-period nominal interest rate, πt is the inflation rate,

and εy,t is a demand shock, assumed to be i.i.d. N(0, σ2
y). For any variable zt, zτ |t denotes

E[zτ |Ωt], the expected value (optimal prediction) of zτ conditional on the date-t information

set Ωt. In our model the policymaker and private agents have symmetric information.

When ϕ = 1 Eq. (1) resembles the modern new-Keynesian specification of aggregate

demand based on the consumption Euler equation, in which σ is the intertemporal elasticity

of substitution (e.g., Rotemberg and Woodford, 1997). Augmenting the IS equation with

lags (ϕ < 1) represents a departure from strict micro-foundations but is necessary to cap-

ture persistent aspects of the data, as discussed by Estrella and Fuhrer (2002). Following

Rudebusch (2002), Eq. (1) contains an explicit lag in the transmission from the ex ante
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real interest rate to output and on the information set for expectations formation. Svensson

(1997) asserts that these kinds of adjustment and processing lags, which together give rise

to a delayed reaction of output to changes in policy, are crucial aspects of monetary policy

that should feature prominently in models of inflation targeting.

2.2 The Phillips Curve

Inflation dynamics are governed by a Phillips curve

πt = απt+1|t−1 + (1− α)πt−1 + κ(yt−1 − ynt−1) + επ,t, (2)

which relates inflation to past and expected future inflation and the output gap, defined

as the deviation of actual output from its natural level. The conceptual framework for Eq.

(2) is a model of monopolistically competitive firms that adjust prices infrequently. The

cyclical factor determining the size of price adjustments is real marginal cost, which varies

proportionately with the output gap under certain conditions (e.g., Woodford, 2003). In such

an environment, parameter κ is inversely related to the duration of price fixity. The variable

επ,t is viewed as an exogenous “cost-push” shock and is assumed to be i.i.d. N(0, σ2
π).

The rationale for including lagged inflation (α < 1) is mainly empirical. Fuhrer (1997)

argues that purely forward-looking Phillips curves produce “jump” dynamics for inflation

that are at odds with the type of inertial responses evident in the data. As in Rudebusch

(2002), we embed a transmission lag from the output gap to inflation and an information lag

in the dating of expectations. The combination of these two ensures that current inflation

is predetermined and that policy changes affect prices by altering expected future inflation

one period before being transmitted through the output gap.3

Natural output ynt plays a central role in the model, both as a driving force for inflation

3A shift in it has an immediate impact on πt+2|t, which in turn affects the equilibrium value of πt+1.
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and as a target for monetary policy. As is standard in the new-Keynesian literature, we view

natural output as the level that prevails in the absence of sticky prices and market power.

The key difference here is that agents do not observe ynt directly, but instead must estimate

it every period by solving a particular signal-extraction problem. Although values of ynt are

unseen, its stochastic process is known with certainty. Specifically, natural output follows

ynt = θynt−1 + εn,t + ηyεy,t, (3)

where |θ| < 1. Fluctuations in ynt originate from two different shocks. The first shock,

εn,t, immediately affects the state of natural output and is assumed to be i.i.d. N(0, σ2
n).

Numerous studies interpret this kind of shock as a productivity innovation (e.g., Clarida,

Gaĺı, and Gertler, 1999). The second shock is the demand shock, εy,t, which enters the law of

motion for ynt with coefficient ηy ≥ 0. In a general equilibrium setting with nominal rigidities,

natural output is driven by supply (productivity) and demand shocks, the latter of which

can be attributed to things like shifts in consumer preferences (e.g., Erceg, Henderson, and

Levin, 2000). Permitting correlation between natural output and aggregate demand shocks

is consistent with the theoretical framework that underlies this class of models.

2.3 Okun’s Law

The data used to estimate simple new-Keynesian models is usually limited to measures of

real output, inflation, and a nominal interest rate (e.g., Lubik and Schorfheide, 2004; Lindé,

2005). In the real world, however, central banks and market participants forecast the state

by filtering information from numerous economic variables that are not always present in

stylized models (e.g., Boivin and Giannoni, 2006). To partially capture this dynamic, we

augment Eqs. (1) - (3) with an equation linking the unemployment rate, a key indicator of

cyclical conditions, to the output gap. This allows unemployment data to be used by agents
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for signal extraction and by the econometrician for estimating the structural parameters.

Unemployment enters the model by means of an Okun’s Law relationship

ut − un
t = −χ(yt − ynt ), (4)

where ut and un
t are the actual and natural rates of unemployment. Natural unemployment is

understood to be the rate at which there is no incipient pressure on inflation stemming from

imbalances between yt and ynt . Eqs. (2) and (4) imply that when ut = un
t , the only forces

acting on inflation are “cost-push” shocks.4 Like ynt , we assume that un
t is not observable, but

its stochastic process is part of Ωt. We follow Staiger, Stock, and Watson (2001) in describing

natural unemployment as a random walk: un
t = un

t−1 + εu,t, and εu,t is i.i.d. N(0, σ2
u).

When there is no uncertainty about the state of the economy, unemployment is irrelevant

for policy since it has no causal role in the dynamics of other variables and is not an argument

in the loss function (see below). In the more realistic case where uncertainty exists, however,

unemployment may carry useful information on unobservable components of the state that

are important for stabilization, such as the natural level of output. It follows that changes

in the unemployment rate that are thought to reflect movements in payoff-relevant variables

indirectly affect the dynamics of the model by inducing shifts in the policy instrument.

2.4 The Loss Function

The central bank selects it each period to minimize the loss function

Lt = E

[
(1− δ)

∞∑
j=0

δj{π2
t+j + λy(yt+j − ynt+j)

2 + λi(it+j − it+j−1)
2}
∣∣∣Ωt

]
, (5)

4Our definition of natural unemployment differs somewhat from the long-run concept of Friedman (1968)
and Phelps (1968), who describe it as the unemployment rate to which an economy would converge given
structural features of the labor market. While our model does not explain the determinants of long-run
unemployment, the fact that the Phillips curve coefficients on past and future inflation sum to one implies
that it is consistent with the Phelps-Friedman natural rate hypothesis.
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where δ ∈ (0, 1). Eq. (5) embodies the preferences of a policymaker whose goals are to

stabilize inflation and output around their target values and to achieve a smooth path for

the interest rate. The inflation target is assumed to be constant and is normalized to zero.

The time-varying output target is given by the natural level of output ynt . The “smoothing”

term λi(it+j − it+j−1)
2, which penalizes big swings in the policy instrument, is empirically

compelling because it helps account for the serial correlation apparent in interest rate data

(e.g., Söderström et al., 2005). Parameters λy ≥ 0 and λi ≥ 0 are the weights on the output

gap and interest-rate smoothing objectives relative to inflation. Together they characterize

the preferences of monetary policy since their values determine how much the central bank

trades off one stabilization goal for another. The loss function weights are the key objects of

interest in this paper. As such, they are treated as free parameters that are to be estimated

jointly with the coefficients of the structural model.

2.5 The Indicator Variables

Economic agents have limited information on the state of the economy. At the beginning of

each period, they receive signals on three variables from which they must infer the true value

of the full state vector. The first two signals, or indicators, are noisy measures of output

growth and inflation represented by

∆yot = ∆yt + vg,t (6)

πo
t = πt + vp,t, (7)

where vg,t and vp,t are measurement shocks that capture the noise in the observations of ∆yt

and πt first released (e.g., by a statistical agency) in period t.5 We allow for possible serial

5∆ denotes the first difference operator.
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correlation in the measurement errors by modeling them as autoregressive processes

vg,t = ρgvg,t−1 + εg,t (8)

vp,t = ρpvp,t−1 + εp,t, (9)

where |ρg| < 1, |ρp| < 1, εg,t ∼ i.i.d. N(0, σ2
g), and εp,t ∼ i.i.d. N(0, σ2

p).

Measurement shocks affect the information problem that agents confront in a significant

way. Suppose that σg = σp = 0, implying that the true values of output and inflation

were observable. It is clear from the IS equation that market participants and the central

bank would be able to perfectly derive aggregate demand shocks each period. Furthermore,

the only uncertainty surrounding inflation would be in distinguishing cost-push shocks from

shocks to natural output. When both indicators are contaminated with noise (i.e., σg, σp >

0), identifying the sources of aggregate fluctuations is more challenging and subject to greater

uncertainty. An observed change in output growth could be due to a demand shock or a

measurement shock. Similarly, an increase in inflation could be the result of rising output,

declining natural output, a cost-push shock, or a positive measurement shock. Given their

knowledge of the economy, information-constrained agents assign certain probabilities to

each of these scenarios in forming an optimal estimate of the state.

The third indicator is the unemployment rate ut. Because it depends on the true output

gap via Okun’s Law, unemployment can have significant information content in a setting

where agents receive noisy signals on output growth and inflation and natural output is

unknown. However, ut also varies in response to unobserved shifts in the natural rate of un-

employment un
t , which degrades the quality of the information it provides on current output

gap conditions. In fact, observations on ut are uninformative in the course of forecasting the

state if the variance of un
t is large. This turns out to be the case in our model because the

natural rate follows a random walk, implying that the variance of un
t is unbounded. As a
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practical matter, we first difference Eq. (4) to obtain

∆ut = −χ(yt − ynt ) + χ(yt−1 − ynt−1) + εu,t, (10)

and assume that agents observe the change in the unemployment rate ∆ut. Knowledge of

∆ut is potentially valuable since fluctuations in εu,t are stationary. Thus one implication of

modeling un
t as a random walk process is that the information content of the unemployment

rate actually resides in the first difference of this series.

3 Optimal Policy and Signal Extraction

Using the notation in Svensson and Woodford (2003), we express the model compactly as

 Xt+1

Γxt+1|t

 = A1

 Xt

xt

+ A2

 Xt|t

xt|t

+Bit +

 Nεt+1

02×1

 , (11)

where Xt = [yt πt ynt yt−1 it−1 ynt−1 εu,t vg,t vp,t]
′ are the date-t predetermined variables,

xt = [yt+1|t πt+1|t]
′ are the date-t forward-looking variables, it is the policy instrument, and

εt+1 = [εy,t+1 επ,t+1 εn,t+1 εu,t+1 εg,t+1 εp,t+1]
′ are the i.i.d. shocks with covariance matrix Σ.

The parameters of the model appear as elements of the matrices A1, A2, B, Γ, and N .6

The policymaker and the private sector do not have full information about the state of the

economy, that is, about the individual elements of Xt and xt. Instead, they only observe the

indicator variables, collected in a vector Zt, which can be used to form optimal predictions

of Xt and xt at each point in time. In this model the indicators are related to the state by

Zt = DXt, (12)

6Appendix A shows how Eqs. (1) - (10) can be mapped into the general linear-quadratic form used by
Svensson and Woodford (2003).
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where Zt = [∆yot π
o
t ∆ut]

′ and D is a (3×9) selection matrix.7 The information set available

to agents in period t is thus Ωt ≡ {Zτ , τ ≤ t;A1, A2, B,Γ, N,D,Σ, δ, λy, λi}.

Eq. (12) is a special case of the general formulation used by Svensson and Woodford

(2003) in which Zt contains both predetermined and forward-looking variables. Forward-

looking indicators complicate the signal-extraction problem because they depend, by defi-

nition, on expected future endogenous variables. These expectations, in turn, depend on

an estimate of the state, which is itself a function of the indicators. The authors develop

new techniques to handle this circularity issue and present the results in terms of a modified

Kalman filter.8 In our model all of the indicator variables are predetermined. As a result,

the standard Kalman filter is sufficient for computing optimal forecasts of the state vector.9

3.1 Optimization under Discretion

The central bank conducts optimal monetary policy under discretion. As such, it minimizes

the loss function period-by-period subject to Eq. (11) conditional on Ωt. The equilibrium is

one in which the policy functions depend only on current predetermined variables.

Svensson and Woodford (2003) show that the policy setting and estimates of the forward-

looking variables depend linearly on current estimates of the predetermined variables,

it = FXt|t, (13)

xt|t = GXt|t, (14)

7Note that vg,t and vp,t are embedded in Xt rather than appearing as explicit shocks to Eq. (12).
8These findings extend work by Pearlman, Currie, and Levine (1986) showing that estimation of the state

can be obtained by means of a Kalman filter in forward-looking models with partial symmetric information.
9A case involving forward-looking indicators is examined in Appendix C, where we estimate a version of

the model that removes all transmission and information lags so that current output and inflation are no
longer predetermined. The estimation results are broadly similar to the ones reported in section 5.
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where F solves a particular matrix Ricatti equation, G is a fixed point of the relation

G = (A22 − ΓGA12)
−1[(ΓGA11 − A21) + (ΓGB1 −B2)F ],

and {A11, A12, A21, A22, B1, B2} are the partitions of A ≡ A1 + A2 and B with dimensions

conformable to Xt and xt. Substituting Eq. (14) into the lower block of Eq. (11) gives

xt = G1Xt +G2Xt|t, (15)

with G1 = −(A1
22)

−1A1
21 and G2 = G−G1. It follows that predetermined variables obey

Xt+1 = HXt + JXt|t +Nεt+1, (16)

where H = A1
11 + A1

12G
1 and J = A1

12G
2 + A2

11 + A2
12G+B1F .

3.2 Optimal Filtering

To fully characterize the dynamics of the endogenous variables, the law of motion for Xt|t

must be specified. Since none of the forward-looking variables are observable, estimates of

the predetermined variables can be obtained from a standard Kalman filter. The recursive

updating equation expressed in terms of innovations to Xt is given by

Xt|t = Xt|t−1 +KD(Xt −Xt|t−1), (17)

where the steady-state gain matrix K = PD′(DPD′)−1. The matrix P is the covariance of

the prediction error Xt −Xt|t−1 which satisfies P = H[P − PD′(DPD′)−1DP ]H ′ +NΣN ′.
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Finally, taking conditional expectations of Eq. (16) gives

Xt+1|t = (H + J)Xt|t, (18)

which completes the description of equilibrium dynamics under partial information.10

A benefit of modeling the optimal-filtering problem is that it provides an estimate of the

Kalman gain matrix.11 The elements of this matrix correspond to the weights agents put

on innovations in the various indicators when revising their forecasts of the predetermined

variables. In other words, K describes how new information is used in updating beliefs

about the state. Interestingly, the filtering weights can be determined without reference to

the policymaker’s control problem. Note that the equations for K and P imply that the gain

matrix depends on A1, D, N , and Σ but not on λy, λi, or δ. This illustrates the well-known

separation principle in linear-quadratic models with partial information (e.g., LeRoy and

Waud, 1977). Specifically, the best estimate of the state is independent of the chosen policy.

4 Estimation Strategy

The equilibrium under partial information admits a state-space representation that can be

estimated with maximum likelihood using the Kalman filter (e.g., Harvey, 1989). As in Lippi

and Neri (2007), the state vector appropriate for estimation is formed by augmenting the

predetermined variables Xt with conditional forecasts Xt|t−1. Thus for our model the state

is an (18× 1) object st ≡ [X ′
t X

′
t|t−1]

′ whose dynamics are governed by a transition equation

st+1 = Mst +Nεt+1. (19)

10Appendix A provides a derivation of the Kalman-filter updating equation for this model.
11An estimate of the gain matrix K is presented in Appendix D along with a brief discussion of the results.
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Elements of the (18×18) matrix M and the (18×6) matrix N are functions of the structural

parameters, and εt+1 = [εy,t+1 επ,t+1 εn,t+1 εu,t+1 εg,t+1 εp,t+1]
′ is a vector of guassian shocks.

Estimation requires modeling the joint evolution of Xt and Xt|t−1 since these two vectors are

determined simultaneously by Eqs. (16) and (18) after substituting out Xt|t using Eq. (17).

Closing the state-space model is a measurement equation linking variables observed by

the econometrician to the state st. Unlike economic agents who only observe the indicators

Zt = [∆yot πo
t ∆ut]

′ along with the policy rate it, we assume that the econometrician sees

not just Zt and it but also the true values of output growth ∆yt and inflation πt. This is a

departure from Lippi and Neri (2007) and Neri and Ropele (2011) who require that economic

agents and the econometrician always observe the same data.

Our choice to give the researcher an expanded data set that includes ∆yt and πt recognizes

the distinction between economic decision making, a process carried out in real time, and

model estimation, which is an exercise in retrospection. It is well known that real-time data,

a concept made explicit in our model through the role of indicators, are often revised as more

comprehensive information becomes available and as measurement techniques improve. With

the benefit of hindsight, the econometrician should be able to condition estimation on revised

data even though such data would not have been accessible to agents in real time. Below

we argue that ex post revised data, while not perfect, are the best available measures of the

true variables that the structural model seeks to explain but that agents never fully observe.

Defining yt ≡ [∆yot πo
t ∆ut it ∆yt πt]

′, the measurement equation takes the form

yt = Tst + ut. (20)

Elements of the (6× 18) matrix T are reduced-form coefficients and ut ≡ [0 0 0 ui,t 0 0]′.12

The variable ui,t is a measurement shock with distribution i.i.d. N(0, σ2
i ); it represents the

12Appendix A shows how to derive Eqs. (19) and (20) and how to construct matrices M, N, and T.
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“stochastic wedge” between the sample interest rate and the rate prescribed by optimal

discretion. The role of ui,t is to circumvent the stochastic singularity that would occur if the

observed interest rate responded only to st (e.g., Ingram, Kocherlakota, and Savin, 1994).

Estimation requires data for the variables in yt observed by agents and those seen ex-

clusively by the econometrician. In choosing ∆yot and πo
t , we follow Orphanides (2001) who

argues that real-time data accurately represent the information that was available to pol-

icymakers and market participants who were around at the time economic decisions were

being made. Our data source is the Real-Time Data Set for Macroeconomists published by

the Federal Reserve Bank of Philadelphia.13 We define ∆yot as the annualized first difference

of the log of seasonally-adjusted real output (ROUTPUTQvQd), converted to per-capita

terms by subtracting the log growth rate of the civilian noninstitutional population. In

constructing this series, we take the last output growth calculation from each “vintage” of

data published (quarterly) over the sample period. Using the same procedure, readings on

the annualized first difference of the log of the seasonally-adjusted output deflator (PQvQd)

provide our measure of πo
t .

14

The data used to assemble real-time measures of output growth and inflation undergo

a continual process of revision in the months and years following their initial release (e.g.,

Croushore and Stark, 2001). As a result, the “true” values of these concepts remain unknown

for a long time after the date of first publication. In light of this fact, we assume that

observations of ∆yt and πt correspond to “final” published data, that is, the complete time

series as recorded in the latest available release.15 Of course, even final data is subject to

13http://www.philadelphiafed.org/research-and-data/real-time-center/real-time-data/
14We have assumed that error-prone measures of output growth and inflation are observed by agents

contemporaneously, even though preliminary data from the national income and product accounts is actually
released with a one-quarter lag. We estimated a version of the model that accounts for the publication lag
by setting Zt = [∆yot−1 πo

t−1 ∆ut]
′. The results were very similar to the ones reported here.

15We choose not to model the nature or timing of data revisions in this paper. Instead, the cumulative
effect of the full history of revisions to any given data point are encapsulated in our model by the measurement
shocks vg,t and vp,t, defined as the difference between real-time observations of output growth and inflation
and their final values. Although agents are unable to perfectly infer vg,t and vp,t like the econometrician
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uncertainty and will likely be revised again in the future. Nevertheless, we view it as offering

the most reliable account of the true historical profiles of output growth and inflation.16

Finally, the information structure implies that private agents and the econometrician

have the same data on unemployment and the nominal interest rate. Our measure for it is

the annual yield on three-month US Treasury bills. For the unemployment series we use the

seasonally-adjusted civilian unemployment rate (RUC). Our assumption that agents observe

the true value of ∆ut in real time is based on reports showing that revisions to unemployment

data are usually small, infrequent, and confined to seasonal factors (e.g., Kozicki, 2004).

Fig. 1 plots the historical time series for the variables in the econometrician’s data set.

Each one has been de-meaned prior to estimation, except for ∆ut whose sample mean is very

near zero to begin with. Observations on output growth, inflation, and the interest rate are

therefore interpreted as annual percentage points less their sample averages. Readings on

∆ut are expressed as percentage-point changes in the quarterly unemployment rate. Rather

than display the actual series for ∆yot and πo
t , Fig. 1 plots the differences between real-time

and final revised values for output growth and inflation. Viewing the real-time data in this

way makes it easier to spot periods where large ex post revisions occurred.

Our sample period runs from 1979:Q3 - 2010:Q1, dates that span the Federal Reserve

chairmanships of Paul Volcker, Alan Greenspan, and Ben Bernanke. The conventional wis-

dom is that a fundamental shift in US monetary policy occurred soon after Volcker’s ap-

pointment in August 1979. Since we do not address the possibility of structural breaks in

the policy parameters, we estimate our model over a period of time that can be plausibly

characterized as having a stable monetary regime.

can, they have complete knowledge of their stochastic properties when forecasting the state.
16The series for ∆yt and πt are based on historical data published during the final quarter of 2010. At the

time of writing, the 2010:Q4 vintage was the most up-to-date and allowed for two consecutive revisions to
the last observation in our sample.
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4.1 A Model with Complete Information

Throughout the paper we will be comparing results of the partial information model to those

from a version that assumes complete information. Under complete information agents have

full knowledge of the state of the economy at all times. This is accomplished by setting the

matrixD in Eq. (12) equal to the identity matrix, so that the true values of all predetermined

variables are seen each period.17 Clearly, full information obviates the signal-extraction

problem used to track agents’ beliefs when information is incomplete. As a result, the

equilibrium with discretionary policy can be found by applying standard solution methods

for linear-quadratic control problems without a filtering component (e.g., Söderlind, 1999).

Another difference between partial and complete information concerns the data used for

estimation. When agents know the true values of ∆yt and πt, the measurement shocks in

Eqs. (6) and (7) vanish (i.e., σg = σp = 0). Using real-time data on output growth and

inflation along with the true values as recorded in the latest data vintage would render the

model stochastically singular because ∆yot = ∆yt and πo
t = πt in this case. Consequently, we

drop ∆yot and πo
t from the measurement equation and estimate the model using only data

on unemployment, the interest rate, and the revised series for output growth and inflation.

5 Empirical Findings

5.1 Parameter Estimates

Table 1 displays maximum-likelihood estimates and standard errors of the parameters ap-

pearing in Eqs. (1) - (10).18 The first column presents estimates for the benchmark model

under partial information. The second column presents estimates for the case in which the

17A more detailed exposition of the complete information model can be found in Appendix B.
18Robust standard errors are computed as the square roots of the diagonal elements of the variance-

covariance matrix proposed by White (1982).
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policymaker and private agents have complete information on the state of the economy.

There are many similarities but also some important differences between estimates of the

partial and complete information models. Looking first at the structural shocks, estimates

of σy and σπ indicate that demand shocks are about one-third less volatile than cost-push

shocks in both models. Estimates of σn, however, reveal that shocks to natural output are

almost twice as volatile under partial information. Moreover, the impact of demand shocks

on natural output as measured by ηy is weaker when agents have limited information. The

estimate of ηy is 0.32 in this case compared to 0.46 under full information. Regarding shocks

to the natural rate of unemployment, the estimate of σu is 0.08 under partial information

but 0.17 under complete information. Both are statistically significant despite their small

size relative to other shocks in the model.

Estimating the partial information model with real-time data enables us to identify the

measurement shocks vg,t and vp,t in Eqs. (6) and (7). Estimates of σg and σp reveal that the

noise component of πo
t is larger on average than that of ∆yot . Both estimates are also statis-

tically significant and of the same order of magnitude as the “fundamental” shocks entering

the IS equation and the Phillips curve. We also find little evidence of serial correlation.

Estimates of ρg and ρp are in the neighborhood of zero and statistically insignificant.

The partial and complete information models have fairly similar implications for the IS

and Phillips curves but differ somewhat with regard to Okun’s Law. Estimates of ϕ, for

example, are close to one-third, implying that both lagged and expected future output play

a key role in the IS equation. Estimates of σ, the interest-rate elasticity of output, are small

but significant only in the partial information case. Estimates of α are around one-half, which

suggests that past and future inflation are equally important for explaining current inflation

in the Phillips curve. Estimates of the output gap elasticity κ are small and imprecise but

within the range typical of the literature (e.g., Kiley, 2007). Finally, the estimate of the

Okun coefficient χ is 0.38 under partial information, which is about 20 percent smaller than
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the corresponding estimate under complete information.

Turning to the loss function, the estimate of λi is 0.76 in the partial information model

but only 0.16 under complete information.19 Although the difference between the estimates

may be economically significant, the standard errors suggest that neither is statistically

different from zero. Our results contrast those reported by Dennis (2004), Söderström et

al. (2005), and Dennis (2006) showing that optimal and observed policy actions can be

reconciled with a large and significant weight on interest-rate smoothing, albeit in a full

information environment. Incorporating limited information in the present model evidently

helps raise the smoothing penalty. Nevertheless, the uncertainty surrounding our estimate

of λi makes it difficult to draw precise conclusions about the past concern for interest-rate

smoothing as an explicit policy goal. Studies that find similar evidence include Favero and

Rovelli (2003), Salemi (2006), and Givens (2012).

Where information restrictions have a more clear-cut impact is on inferences concerning

the output gap objective. The estimate of λy under partial information is 0.27 with a stan-

dard error of 0.12, while under complete information the estimate is 0.15 and the standard

error 0.50. Thus macroeconomic outcomes, if viewed from the perspective of the partial

information model, are consistent with the notion that policymakers place significant weight

on stabilizing the output gap. This is an important result because it points to a different

interpretation of historical policy motives than would otherwise emerge had we confined our

analysis to the case of full information. It may also provide an answer for why studies often

find λy to be insignificant (e.g., Dennis, 2006; Salemi, 2006) despite public statements from

leading central bankers suggesting that output and inflation are independently important

as exemplified by the Federal Reserve’s “dual mandate” (e.g., Mishkin, 2007). Our find-

ings suggest that it could be due to the failure of these studies to account for the type of

19We fix the discount factor δ = 0.99 prior to estimation. Stress tests showed that the remaining estimates
are not overly sensitive to small variations in δ for either model.
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information constraints that policymakers face in real time.

To further assess the significance of the output stabilization goal, we conduct likelihood

ratio tests of the hypothesis that λy = 0. Significance tests that rely on standard errors can be

distorted by inaccuracies in evaluating the Hessian. When estimates of the restricted model

are available, a likelihood ratio test is preferred because it does not reference standard errors.

Columns three and four of Table 1 report estimates for the partial and complete information

models under the restriction λy = 0.20 Omitting the output gap under partial information

lowers log likelihood from −671.25 to −675.56, producing a chi-square statistic of 8.61 (p-

value < 0.01). Applying the same procedure to the complete information model generates a

chi-square statistic of 0.08 (p-value is 0.78). The hypothesis that λy = 0 is therefore rejected

by the data in the partial information case. By contrast, the complete information model

appears to fit the data equally well with or without an output gap term in the loss function.

To recap, we find that incorporating uncertainty into the model in the form of a partially

observed state changes the estimates of certain parameters in a significant way. Chief among

them is the relative weight on the output gap in the central bank’s loss function, which is

nearly twice as large and far more precise under partial information than under complete

information. Estimates of some of the non-policy parameters are also sensitive to the infor-

mation structure, notably the Okun coefficient and the variances of the shocks to natural

output and unemployment. Taken together, our results lend support to the central argument

put forward by Orphanides (2001) and illustrate the importance of basing historical analysis

on realistic assumptions about the information available to decision makers in real time.

20In the complete information model the null hypothesis is λy = 1e-5. Initial attempts at estimating the
model with λy = 0 caused (κ, λi) → (0, 0), producing an indeterminate equilibrium under discretionary
policy. We found that λy = 1e-5 was small enough to form inferences about the statistical contribution of
λy without causing our estimates to drift into the indeterminacy region of the parameter space.
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5.2 Tests of Policy Optimality

A central task of this paper is to determine whether our partial information framework can

resolve the conflict between optimal policy and observed policy that has been frequently

reported in the literature (e.g., Rudebusch, 2001; Dennis, 2006; Salemi, 2006). One way to

accomplish this is to formally test the parameter restrictions implied by discretionary policy

in both the partial and complete information models. This involves estimating the model

once with the optimal-policy restrictions imposed and once with those restrictions relaxed

and then testing whether the model fits the data equally well in the two cases. If accounting

for imperfect information helps to reconcile historical and optimal policy, we should find it

harder (in a statistical sense) to reject the optimality hypothesis under partial information

than under complete information.

To organize a valid test of the optimal-policy restrictions, we estimate a version of the

model that does not force central bank actions to be the product of loss minimization. Specif-

ically, we replace Eq. (5) with an unconstrained rule for the interest rate that fixes distinct

response coefficients to the predetermined variables comprising the state. This arrangement

nests optimal discretion as a special case since the latter results from conditioning estimation

on the requirement that policy-rule coefficients jointly minimize the loss function. Table 2

displays estimates of the policy coefficients under partial and complete information. In both

cases we report the unrestricted estimates, obtained by relaxing the coefficient restrictions

tied to loss minimization, as well as the optimal coefficients implied by discretionary policy.21

It is immediately clear that the discrepancy between optimal and unrestricted policy is

much smaller in the partial information case than in the complete information case. Un-

der partial information optimal responses to perceived inflation and the lagged interest rate

are nearly identical to their unrestricted counterparts. The policy restrictions also do not

appear to have a significant effect on responses to perceived levels of current and past out-

21Standard errors of the discretionary coefficients are obtained using the delta method.
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put. Responses to perceived changes in natural output, however, are a bit smaller (less

accommodative) under optimal policy than under an unrestricted policy.

The picture is very different in the complete information case, where imposing optimal

policy substantially alters some of the coefficient estimates. For example, discretion calls for

a much weaker countercyclical response to output and tighter monetary conditions following

a rise in natural output.

The tension between fitting the data and satisfying the optimal-policy criteria can also be

seen in estimates of the structural parameters reported in Table 3. Notice there are only a few

parameters in the partial information case for which the estimates recovered under discretion

are significantly different from those associated with the unrestricted policy. These include

the shocks to natural output σn and unemployment σu and perhaps the IS parameters ϕ and

β. The contrast is more prominent under complete information. Notably, estimates of ϕ and

β point to greater forward-looking emphasis in the IS curve when policy is unconstrained,

and estimates of σn and θ indicate less volatility and persistence in shocks to natural output.

Because the models in each comparison group are nested, we can evaluate the optimal-

policy hypothesis using a likelihood ratio test. Under partial information log likelihood is

−665.59 when policy is unrestricted compared to −671.25 when it is optimal. Since there

are 5 free policy-rule coefficients in the former but only 2 loss function weights in the latter,

discretion places 3 restrictions on the model. Thus the chi-square statistic is 11.32 (p-value

is 0.0101), indicating that the data reject the optimality hypothesis at the 5% significance

level but not at the 1% level. Under complete information the policy restrictions decrease

log likelihood from −406.90 to −445.17, producing a chi-square statistic of 76.53 (p-value

< 0.0001). We therefore reject the null with a high degree of confidence in this case.

Another way to evaluate the optimal-policy hypothesis is with the Bayesian information

criterion. The BIC has a couple of advantages over a likelihood ratio test. First, it penalizes

log likelihood according to the number of free parameters in the model. This often makes
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the BIC a more robust indicator of fit since it is always possible to increase likelihood by

adding parameters, even though such a procedure may lead to overfitting instead of actual

gains in predictive performance. Second, the BIC is asymptotically equivalent to the Bayes

estimator under certain conditions (e.g., Schwarz, 1978), thereby providing a measure of the

model’s posterior odds. As explained by Kiley (2007), a pseudo-posterior probability can be

formed by using the BIC as a substitute for marginal likelihood in the ratio

M(j) =
exp(BIC(j))

m∑
h=1

exp(BIC(h))
, (21)

where M(j) denotes the conditional probability of some candidate model j among the m

different models being considered. Although it has a Bayesian interpretation, the pseudo-

odds ratio depends only on the discrepancy between the approximating model and the data,

adjusted for degrees of freedom, and not on any prior beliefs about the parameter or model

space. This follows from the implicit use of equal model priors in the formation of M and

from the independence between the BIC and priors over the parameters of each model.

Log likelihood, the BIC, and the posterior model probabilities are displayed in Table 3.

Under partial information the BIC is −718.53 for the unrestricted policy but −716.97 for

optimal discretion. Between these two candidates, the pseudo-odds criterion points to an

83% probability of the discretionary model given the available data. The opposite occurs

under complete information. Loosening the optimal-policy restrictions raises the BIC from

−481.26 to −450.21, resulting in a near zero posterior probability of the discretionary model.

The results presented in this section echo the findings of Rudebusch (2001) who shows

that incorporating real-time uncertainty about the output gap and inflation is critical in

efforts to interpret historical policy as the outcome of a loss minimization problem. In-

terestingly, the similarities emerge despite some important conceptual and methodological

differences between our two studies. One difference is that Rudebusch uses a simple two-
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parameter Taylor rule to characterize monetary policy, whereas we consider a wider class of

policies in which the interest rate reacts to all of the variables in the state vector.22 Our

paper also differs in the procedure for identifying the best-fitting optimal policy. Rudebusch

derives optimal Taylor-rule coefficients using a fixed structural model and loss function for

the central bank and then searches over the right mix of uncertainties until the resulting

policy coefficients match the historical ones. By contrast, we impose on the underlying

model a specific information constraint and then search over eligible values of the structural

parameters and loss function weights for the combination that maximizes log likelihood.

5.3 Historical Misperceptions

Our decision to model the central bank’s information problem recognizes the fact that poli-

cymakers face considerable uncertainty about the state of the economy in real time. Under

such conditions policy actions will reflect current perceptions of the state rather than its

true value. Correctly interpreting historical policy, so the argument goes, requires that one

take into account how those perceptions have evolved through time. Yet, implicit in this

argument is the assumption that beliefs about the state are often far from reality; if not,

policy behavior would be very similar to the behavior suggested by estimates based on re-

vised data and perfect information. It follows that if agents’ perception errors are negligible,

using a model that distinguishes the true state from real-time estimates of the state may not

be important for obtaining valid inferences of the structural parameters and loss function

weights. We investigate this concern by deriving historical estimates of the misperceptions

that actually occurred over the sample period as seen through the partial information model.

A quantitative assessment of the size and nature of those misperceptions can provide evi-

dence on whether incorporating partial information as described above is critical for the type

22Excluding a constant intercept term, the policy rule used in Rudebusch (2001) can be obtained in our
model by restricting γy = −γn and γyy = γi = 0.
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of policy analysis carried out in this paper.

In estimating the path of historical misperceptions, we focus on two variables that jointly

summarize most of the information in the state vector: the output gap and inflation.23 To

be clear, by misperceptions we mean differences between the true paths of the output gap

and inflation, {qt, πt}Tt=1, and the paths perceived by agents in the model, {qt|t, πt|t}Tt=1. We

use the fixed interval Kalman smoother as described in de Jong (1989) on Eqs. (19) and

(20) to estimate both the true and perceived series from 1979:Q3 to 2010:Q1. Unlike the

“one-sided” estimates produced by the standard Kalman filter, the smoother generates “two-

sided” estimates that reflect data contained in the full sample. We denote the sequence of

these estimates as {q̂t, π̂t, q̂t|t, π̂t|t}Tt=1. Thus for any period t, the estimated output gap

misperception is given by q̂t|t − q̂t and the inflation misperception by π̂t|t − π̂t.

Figs. 2 and 3 plot the actual and perceived estimates of the output gap and inflation,

respectively, as well as the corresponding real-time perceptions errors. Summary statistics on

each of these series are reported in Table 4. Regarding the output gap, our estimates point

to significant variation in agents’ misperceptions over time, ranging from −1.59 percentage

points in 1999:Q4 to 0.45 in 2010:Q1. Estimates of qt|t−qt also appear to exhibit substantial

serial correlation. The first-order autocorrelation coefficient of this series is 0.93, meaning

that errors in forecasting the output gap tended to persist for many periods. Indeed, from

the end of the 1991 recession to the beginning of the most recent “Great Recession,” agents

underestimated the output gap by no less than 0.49 percentage points every quarter.24

Real-time estimates of the output gap are also clearly biased in the Volcker-Greenspan-

Bernanke era. The mean difference between q̂t|t and q̂t is −0.78 percentage points, indicating

that monetary authorities systematically underestimated prevailing output gap conditions.

23In this section we denote the output gap as qt ≡ yt − ynt .
24This finding lends empirical support to the theoretical results in Cukierman and Lippi (2003) demon-

strating that retrospective errors in forecasting the output gap are generally serially correlated in models
with optimal monetary policy and partial symmetric information.
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This result is consistent with the evidence in Orphanides (2003, 2004) showing that the

Federal Reserve’s assessment of the output gap in real time was uniformly lower than its

true value as recognized ex post throughout the 1980s and early 1990s. Our estimates suggest

that this bias continued until 2009:Q3. Finally, it is worth noting that fluctuations in the

perception errors tend to be cyclical. Estimates of qt|t − qt peak (in absolute value) at the

end of expansions and shrink during recessions.

Estimates of actual and perceived inflation displayed in Fig. 3 reveal a different pattern

of misperceptions than those surrounding the output gap. For example, there is little in-

dication of any bias or serial correlation in estimates of the inflation misperceptions. The

average spread between π̂t|t and π̂t in the sample is only 0.01 percentage points, and the au-

tocorrelation coefficient of π̂t|t − π̂t is 0.28. Nevertheless, errors in forecasting inflation were

considerable at times, reaching highs of 2.52 percentage points in 2008:Q4 and lows of −2.07

in 1981:Q1. The overall volatility of π̂t|t − π̂t is nontrivial; the standard deviation of this

series is 0.72 percent. Interestingly, our findings are again quite comparable to the historical

account of the Federal Reserve’s outlook for inflation as documented in Orphanides (2003,

2004). During the 1980s and 1990s, it was not uncommon for real-time estimates of inflation

to be off by 1 or 2 percentage points. However, records also show that the Fed did not make

systematic errors like they did in forecasting the output gap, and inflation misperceptions

typically vanished after a few quarters.

An advantage of using a structural model to estimate historical misperceptions is that

it allows one to identify the economic shocks most responsible for the observed variation.

The papers written by Orphanides are largely silent on this matter because real-time con-

cepts are constructed ex ante from primary source data and without reference to an explicit

model. In particular, misperceptions are obtained by subtracting real-time data published

in the Federal Reserve’s Greenbook from corresponding ex post revised data.25 As a result,

25The Greenbook is prepared by the Federal Reserve Board staff before each meeting of the Federal Open
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Orphanides can only speculate on the key determinants of historical variation in the per-

ception errors. In our setup agents process incoming data efficiently when forecasting the

state. Misperceptions are thus endogenous and depend on the underlying model as well as

the quality of information extracted from the indicators. This feature makes the partial

information model a useful device for examining the contribution of individual shocks to the

variability of policy misperceptions over time.

Table 5 decomposes the variances of qt|t−qt and πt|t−πt into shares attributed to each of

the model’s six orthogonal shocks. Decompositions are reported at one-year, three-year, and

ten-year forecast horizons. The results indicate that shocks to the natural rates of output

and unemployment account for 90 to 95 percent of the short and long-run variance of output

gap misperceptions. Demand shocks and the noise component of output growth jointly

explain the remaining 5 to 10 percent. Cost-push shocks and the noise in observed inflation,

on the other hand, have little impact on mismeasurement of the output gap in real time.

In contrast to the output gap, errors in forecasting inflation are driven almost entirely by

cost-push shocks and inflation noise. The other four shocks account for a negligible fraction

of the prediction error variance at usual business cycle frequencies.

6 Concluding Remarks

This paper reports estimates from a new-Keynesian model of output-inflation dynamics

with optimal discretionary policy under two different assumptions about the structure of

information. In the first case market participants and the central bank only have partial

(symmetric) knowledge about the underlying state of the economy. Each period they form

an optimal estimate of the state by filtering the information contained in a small set of noisy

indicator variables. In the the second case agents are assumed to have complete knowledge

Market Committee. It reports projections for the current and future macroeconomic outlook, which are
made available to the public after a five-year lag.
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of the state at all times. We estimate these two versions of the model separately using

a maximum-likelihood procedure with quarterly US data spanning the chairmanships of

Volcker, Greenspan, and Bernanke. Examining both sets of estimates side-by-side sheds

light on the various ways in which accounting for informational limitations modifies our

understanding of the economic structure and, in particular, the objectives of monetary policy.

Our results show that partial information changes estimates of the Federal Reserve’s loss

function and helps reconcile the conflict between optimal and observed policy over the sam-

ple. Specifically, the weight on output gap stability relative to inflation is large and significant

under partial information but small and imprecise under full information. A likelihood-based

assessment of the restrictions imposed by optimal discretion indicates that partial informa-

tion also improves the fit of the optimal-policy model in comparison to a nested alternative

that leaves policy unrestricted. In other words, optimal and historical policy appear to be

more compatible under partial information than under complete information.

To evaluate the economic significance of our findings, we use the Kalman smoother on

the partial information model to recover historical estimates of both the true and perceived

values of the output gap and inflation. Estimates reveal that past perceptions of the state

were at times a far cry from reality. Moreover, real-time perception errors, particularly those

associated with the output gap, were likely to persist for many quarters. This divergence

between the perceived state and the true state exposes the magnitude of informational prob-

lems that policymakers face and, therefore, the importance for proper historical analysis of

building realistic forms of uncertainty into macroeconometric models of optimal policy.
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Appendix A. The Partial Information Model

This appendix provides a comprehensive derivation of the empirical state-space model in-

troduced in section 4 of the paper. For the sake of clarity and completeness, we begin by

restating the structural equations of the new-Keynesian model.

yt = ϕyt+1|t−1 + (1− ϕ)[βyt−1 + (1− β)yt−2]− σ(it−1 − πt|t−1) + εy,t, (A.1)

πt = απt+1|t−1 + (1− α)πt−1 + κ(yt−1 − ynt−1) + επ,t, (A.2)

ynt = θynt−1 + εn,t + ηyεy,t, (A.3)

ut − un
t = −χ(yt − ynt ), (A.4)

Lt = E

[
(1− δ)

∞∑
j=0

δj{π2
t+j + λy(yt+j − ynt+j)

2 + λi(it+j − it+j−1)
2}
∣∣∣Ωt

]
, (A.5)

∆yot = ∆yt + vg,t (A.6)

πo
t = πt + vp,t, (A.7)

vg,t = ρgvg,t−1 + εg,t (A.8)

vp,t = ρpvp,t−1 + εp,t, (A.9)

∆ut = −χ(yt − ynt ) + χ(yt−1 − ynt−1) + εu,t. (A.10)

In Eqs. (A.1) - (A.10), yt and ynt are real and natural output, ut and un
t are the actual and

natural rates of unemployment, it is the one-period nominal interest rate, πt is the inflation

rate, εy,t is a demand shock, επ,t is a “cost-push” shock, εn,t is a productivity shock, εu,t is

the innovation to the natural unemployment rate, ∆yot and πo
t are noisy measures of output

growth and inflation, vg,t and vp,t are the corresponding noise components, and εg,t and

εp,t are the innovations to those components. For any variable zt, zτ |t denotes E[zτ |Ωt], the

expected value of zτ conditional on the private sector’s date-t information set Ωt. Lt is the

quantity that the central bank minimizes.

Define Xt = [yt πt ynt yt−1 it−1 ynt−1 εu,t vg,t vp,t]
′ to be the (9 × 1) vector of date-t
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predetermined variables, xt = [yt+1|t πt+1|t]
′ to be the (2×1) vector of date-t forward-looking

variables, and εt+1 = [εy,t+1 επ,t+1 εn,t+1 εu,t+1 εg,t+1 εp,t+1]
′ to be the (6× 1) vector of model

shocks with covariance matrix Σ.

Our first task is to write the structural equations as functions of Xt and xt. Eqs. (A.1) -

(A.10) can be written as

 Xt+1

Γxt+1|t

 = A1

 Xt

xt

+ A2

 Xt|t

xt|t

+Bit +

 Nεt+1

02×1

 , (A.11)

where the (11 × 11) matrix A1, (11 × 11) matrix A2, (11 × 1) matrix B, (2 × 2) matrix Γ,

(9× 6) matrix N , and (6× 6) matrix Σ are given by

A1 =



0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1

0 0 θ 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 ρg 0 0 0

0 0 0 0 0 0 0 0 ρp 0 0

−(1− ϕ)β 0 0 −(1− ϕ)(1− β) 0 0 0 0 0 1 −σ

−κ −(1− α) κ 0 0 0 0 0 0 0 1



B =



0

0

0

0

1

0

0

0

0

σ

0



Γ =

 ϕ 0

0 α

 A2 =

 09×9 09×2

02×9 02×2



38



N =



1 0 0 0 0 0

0 1 0 0 0 0

ηy 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



Σ =



σ2
y 0 0 0 0 0

0 σ2
π 0 0 0 0

0 0 σ2
n 0 0 0

0 0 0 σ2
u 0 0

0 0 0 0 σ2
g 0

0 0 0 0 0 σ2
p


.

The next task is to express the variables observed by the policymaker and private agents

as a function of the right-hand-side variables in Eq. (A.11). Let Zt = [∆yot πo
t ∆ut]

′. Then

Zt = DXt, (A.12)

where the (3× 9) matrix D is defined as

D =


1 0 0 −1 0 0 0 1 0

0 1 0 0 0 0 0 0 1

−χ 0 χ χ 0 −χ 1 0 0

 .

The third task is to express the optimal setting of the interest rate under discretion as a

function of the right-hand-side variables in Eq. (A.11). It is useful to first write the central

bank loss function in terms of Xt and xt. Let Yt = [πt (yt − ynt ) (it − it−1)]
′ be the vector
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of variables appearing in the central bank’s loss function. Then

Yt = C1

 Xt

xt

+ C2

 Xt|t

xt|t

+ Ciit,

where the (3× 11) matrix C1, the (3× 11) matrix C2, and the (3× 1) matrix Ci are

C1 =


0 1 0 0 0 0 0 0 0 0 0

1 0 −1 0 0 0 0 0 0 0 0

0 0 0 0 −1 0 0 0 0 0 0

 C2 =

[
03×9 03×2

]
Ci =


0

0

1

 .

The loss function may then be written as

L0 = E

[
(1− δ)

∞∑
t=0

δtY ′
tWYt

∣∣∣Ω0

]
, (A.13)

where W is a (3× 3) diagonal matrix with non-zero elements (1, λy, λi). As explained in the

body of the paper, optimal discretion implies that

it = FXt|t, (A.14)

where F is the (1× 9) matrix that solves the Ricatti equation characterizing optimal policy.

Our fourth task is to characterize expectations under optimal policy. Private agents’

estimates of the current forward-looking variables are related to their estimates of the pre-

determined variables according to

xt|t = GXt|t, (A.15)
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where the (2× 9) matrix G is a fixed point of the relation

G = (A22 − ΓGA12)
−1[(ΓGA11 − A21) + (ΓGB1 −B2)F ],

and where {A11, A12, A21, A22} are the (9 × 9), (9 × 2), (2 × 9), and (2 × 2) partitions of

A ≡ A1 + A2 conformable to Xt and xt. Matrices {B1, B2} are the (9 × 1) and (2 × 1)

partitions of B likewise conformable to Xt and xt. It follows that under optimal discretion,

the relationship between the forward-looking variables and the predetermined variables is

given by

xt = G1Xt +G2Xt|t, (A.16)

where the (2 × 9) matrices G1 and G2 satisfy G1 = −(A1
22)

−1A1
21 and G2 = G − G1. It

also follows that under optimal discretion, the evolution of the predetermined variables is

governed by

Xt+1 = HXt + JXt|t +Nεt+1, (A.17)

where (9×9) matrices H and J satisfy H = A1
11+A1

12G
1 and J = A1

12G
2+A2

11+A2
12G+B1F .

Our fifth task is to explain how agents derive Xt|t. First, note that Eq. (A.12) implies that

the innovation in Zt is a linear function of the forecast error Xt −Xt|t−1. We can therefore

express the optimal prediction of Xt in terms of the (steady-state) Kalman filter as follows

Xt|t = Xt|t−1 +K(Zt − Zt|t−1)

= Xt|t−1 +KD(Xt −Xt|t−1), (A.18)

where the (9× 3) gain matrix K must be determined.

To find K it is helpful to reformulate the problem in terms of prediction errors so that

it admits a state-space representation. Define X̃t ≡ Xt − Xt|t−1 and Z̃t ≡ Zt − Zt|t−1, and
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rewrite Eqs. (A.12) and (A.17) as

Zt − Zt|t−1 = D(Xt −Xt|t−1)

Z̃t = DX̃t (A.19)

and

Xt+1 −Xt+1|t = HXt + JXt|t +Nεt+1 −HXt|t − JXt|t

= H(Xt −Xt|t) +Nεt+1

= H(Xt −Xt|t−1 −KD(Xt −Xt|t−1)) +Nεt+1

= H(I −KD)(Xt −Xt|t−1) +Nεt+1

X̃t+1 = TX̃t +Nεt+1, (A.20)

where we have made use of Eq. (A.18) and defined T = H(I −KD).

Eqs. (A.20) and (A.19) are the state and measurement equations for a standard Kalman-

filter problem with X̃t as the unobserved variable and Z̃t as the observed variable. It follows

that the prediction equation for X̃t is given by the standard formula for updating a linear

projection (e.g., Harvey, 1989)

X̃t|t = PD′(DPD′)−1DX̃t, (A.21)

where we use the fact that X̃t|t−1 = 0. P ≡ Cov[X̃t − X̃t|t−1] = Cov[X̃t] = Cov[Xt −Xt|t−1]

is the (9 × 9) covariance matrix of the prediction errors for X̃t, which are the same as the

prediction errors for Xt since X̃t|t−1 = 0. Rewrite Eq. (A.21) in terms of Xt and Xt|t−1 to

obtain

Xt|t = Xt|t−1 + PD′(DPD′)−1D(Xt −Xt|t−1). (A.22)
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A comparison Eqs. (A.18) and (A.22) shows that the Kalman gain matrix is

K = PD′(DPD′)−1, (A.23)

where it remains to determine P . From Eq. (A.20) we get

Cov[X̃t+1] ≡ P = TPT ′ +NΣN ′ = H(I −KD)P (I −KD)′H ′ +NΣN ′

= H(P −KDP )(I −D′K ′)H ′ +NΣN ′

= H[P − PD′K ′ −KDP +KDPD′K ′]H ′ +NΣN ′

= H[P − PD′K ′ −KDP + PD′K ′]H ′ +NΣN ′

= H[P −KDP ]H ′ +NΣN ′

P = H[P − PD′(DPD′)−1DP ]H ′ +NΣN ′. (A.24)

Therefore, P is defined as the fixed point of Eq. (A.24).

The final task is to derive the augmented state-space model that we take to the data.

The transition equation for the augmented state is

st+1 = Mst +Nεt+1. (A.25)

The (18 × 1) state vector is st ≡ [X ′
t X ′

t|t−1]
′ and the (6 × 1) vector of shocks is εt+1 =

[εy,t+1 επ,t+1 εn,t+1 εu,t+1 εg,t+1 εp,t+1]
′. The (18× 18) and (18× 6) matrices M and N are

M =

 H + JKD J(I −KD)

(H + J)KD (H + J)(I −KD)

 N =

 N

09×6

 .
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The measurement equation is given by

yt = Tst + ut, (A.26)

where yt ≡ [Z ′
t it ∆yt πt]

′ and ut ≡ [0 0 0 ui,t 0 0]′. Let dt ≡ [it ∆yt πt]
′. Then

dt = SXt + Siit + [ui,t 0 0]′

= SXt + SiF (Xt|t−1 +KD(Xt −Xt|t−1)) + [ui,t 0 0]′, (A.27)

where the (3× 9) and (3× 1) matrices S and Si are given by

S =


0 0 0 0 0 0 0 0 0

1 0 0 −1 0 0 0 0 0

0 1 0 0 0 0 0 0 0

 Si =


1

0

0

 .

Stacking Eqs. (A.12) and (A.27) yields Eq. (A.26) with (6× 18) matrix T defined as

T =

 D 03×9

S + SiFKD SiF (I −KD)

 .

Appendix B. The Complete Information Model

Under complete information agents perfectly observe all of the predetermined variables com-

prising Xt each period. These include the true values of measured quantities such as output

and inflation in addition to the purely theoretical concepts like the natural rates of output and

unemployment. The aggregate behavioral relationships and the central bank’s loss function

represented by Eqs. (A.1) - (A.5) are exactly the same as in the partial information model. To

characterize the dynamics of the model under complete information, fix the matrix D in Eq.
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(A.12) equal to the identity matrix and recompute the equilibrium laws of motion given by

Eqs. (A.14) - (A.18). First, note that the steady-state gain matrix K = PD′(DPD′)−1 = I

whenever D = I. It immediately follows from Eq. (A.18) that Xt|t = Xt. Replacing the opti-

mal forecast of the predetermined state vector with its actual value in Eqs. (A.14), (A.16),

and (A.17) yields the following recursive equilibrium:

it = FXt (B.1)

xt = GXt (B.2)

Xt+1 = (H + J)Xt +Nεt+1, (B.3)

where G = G1 + G2 and H + J = A11 + A12G + B1F . Of course, it is not surprising that

the optimal strategies embodied by F , G, and H + J are the same as the ones implied by

partial information given that the model satisfies the certainty equivalence principle.

It is straightforward to express the equilibrium under complete information in state-space

form so that the parameters can be estimated using maximum likelihood. Since agents’ beliefs

about economic conditions are always correct, there is no need to augment the state vector

with efficient forecasts of the predetermined variables as in Eq. (A.25). It follows that the

transition equation is simply given by Eq. (B.3).

Themeasurement equation links the econometrician’s observed variables in period t to the

stateXt. As explained in section 4.1 of the paper, the set of observables relevant for estimation

is given by d̃t ≡ [∆ut it ∆yt πt]
′. Under full information the model makes no distinction

between the true values of output growth and inflation and the observable concepts that

agents acquire in real time, so the measurement shocks vg,t and vp,t appearing in Eqs. (A.6)

and (A.7) equal zero in every period. As a result, we discard the real-time data on these

variables and estimate the model using only the final published data described in section 4.
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Specifically, the measurement equation takes the form

d̃t = S̃Xt + S̃iit + [0 ui,t 0 0]′

= (S̃ + S̃iF )Xt + [0 ui,t 0 0]′, (B.4)

where

S̃ =



−χ 0 χ χ 0 −χ 1 0 0

0 0 0 0 0 0 0 0 0

1 0 0 −1 0 0 0 0 0

0 1 0 0 0 0 0 0 0


S̃i =



0

1

0

0


.

The system given by Eqs. (B.3) and (B.4) can then be used to evaluate the log-likelihood

function using standard Kalman filtering techniques.

Appendix C. Forward-Looking Indicators

In the partial information model presented in section 2, all of the indicator variables are

predetermined. The standard Kalman filter can therefore be used to forecast the state as

illustrated in appendix A. When there are forward-looking indicators, however, agents face

a simultaneity problem that makes the standard Kalman filter inapplicable. In this case the

indicators are determined, in part, by expectations of future endogenous variables. Simul-

taneity arises because these expectations depend on an estimate of the current state, and

that estimate in turn depends on observations of the forward-looking indicators. Pearlman

et al. (1986), and more recently Svensson and Woodford (2003), demonstrate how the signal-

extraction problem can be recast as one involving only predetermined indicators. They go

on to show that the updating equations take the form of a modified Kalman filter capable

of handling the kind of simultaneity issue described above.

In this appendix we present estimates from a variant of the benchmark model in which the
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observables are forward-looking rather than predetermined. Specifically, the model replaces

Eqs. (A.1) and (A.2) with IS and Phillips curves of the form

yt = ϕyt+1|t + (1− ϕ)[βyt−1 + (1− β)yt−2]− σ(it − πt+1|t) + εy,t, (C.1)

πt = απt+1|t + (1− α)πt−1 + κ(yt − ynt ) + επ,t. (C.2)

The only changes appearing in Eqs. (C.1) and (C.2) are the removal of lags in the trans-

mission mechanism and in the dating of conditional expectations. These adjustments to the

timing protocols mean that current and expected future policy actions will now have a con-

temporaneous effect on the indicators given by Zt = [∆yot π
o
t ∆ut]

′. The rest of the aggregate

relationships in the model as well as the loss function stay the same.

To write the structural model in the form of Eq. (A.11), we redefine the vector of prede-

termined variables as Xt = [εy,t επ,t y
n
t yt−1 yt−2 πt−1 it−1 y

n
t−1 εu,t vg,t vp,t]

′ and the vector of

forward-looking variables as xt = [yt πt]
′. The indicators are then linked to the state by

Zt =
[
D1

∣∣ D2

]  Xt

xt

 , (C.3)

where D1 and D2 are submatrices conformable to Xt and xt. We use the algorithms provided

by Svensson and Woodford (2003) to compute the equilibrium under optimal discretion. The

solution procedure yields a policy rule expressing the interest rate as a function of Xt|t, laws

of motion for Xt, xt, and Zt, and a forecasting equation for Xt|t describing how agents update

their beliefs about the predetermined state variables. The entire system is then mapped into

state-space form in a manner similar to that described in appendix A, and the parameters

are estimated by maximum likelihood. Like the analysis of section 5.1, we compare estimates

of the model with partial information to those from a version in which agents have complete

information about the state. The results appear in Table 6.
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With a few exceptions, estimates of the model containing forward-looking indicators are

close to those of the benchmark model featuring only backward-looking indicators. Estimates

of the demand shock σy, for example, are smaller in the case of forward-looking indicators

under both partial and complete information. The Phillips curve parameters are also some-

what different but only under partial information. With forward-looking indicators, the point

estimate of α becomes smaller while that of κ becomes larger, although neither is statisti-

cally significant. Importantly, the presence of forward-looking indicators does not greatly

affect inferences concerning the weight on output gap stability. The estimate of λy is 0.32

with a standard error of 0.11 under partial information, but under complete information the

estimate is 0.42 with a standard error of 0.35. Thus only in the case of partial information

is λy significantly different from zero. Regarding the weight on interest rate smoothing, the

point estimate of λi is still insignificant under complete information but is now large and

significant under partial information. Finally, log likelihood in the partial information model

with forward-looking indicators is −725.30 compared to −671.25 in the benchmark model

with backward-looking indicators. Although it does not constitute a formal hypothesis test

(since the models are non-nested), the fact that log likelihood is higher in the benchmark

model suggests that it is more congruent with the observed data.

Appendix D. An Estimate of the Gain Matrix

In this appendix we clarify how the indicator variables are used by private agents and the

central bank in revising their forecasts of the state. This information is provided by estimates

of the Kalman gain matrix K. Recall that inferences about the value of Xt are updated on

the basis of new observations on Zt according to Xt|t = Xt|t−1 + K(Zt − Zt|t−1). Thus the

(i,j) element of K is the weight placed on innovations to the jth indicator on forecasts of the
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ith state variable. Given the partial information estimates in Table 1, the gain matrix is

K =



∆yot πo
t ∆ut

yt|t 0.4641
(0.0374)

0.0003
(0.0002)

−0.3191
(0.0947)

πt|t 0.0002
(0.0001)

0.5656
(0.0585)

0.0009
(0.0010)

yn
t|t 0.3327

(0.0449)
−0.0017
(0.0016)

1.4253
(0.3411)

yt−1|t −0.1549
(0.0279)

0.0002
(0.0002)

0.3146
(0.1021)

it−1 0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

yn
t−1|t −0.2287

(0.0229)
−0.0017
(0.0017)

−0.2531
(0.1310)

εu,t|t 0.0221
(0.0171)

0.0000
(0.0000)

0.1115
(0.0882)

vg,t|t 0.3810
(0.0389)

−0.0000
(0.0000)

0.6337
(0.1043)

vp,t|t −0.0002
(0.0001)

0.4344
(0.0585)

−0.0009
(0.0010)



,

where standard errors (in parentheses) are found using the delta method.

Among the findings revealed by our estimate of K, one that stands out is the asymmetric

effect changes in the unemployment rate have on real-time estimates of the output gap and

inflation. A unit innovation to ∆ut evidently causes agents to revise down their forecast of

the output gap (i.e., yt|t − ynt|t) by 1.7444 percentage points (−0.3191 − 1.4253 = −1.7444)

but revise up their forecast of inflation πt|t by only 0.0009 percentage points. The reason

why agents rely heavily on ∆ut in forming estimates of the output gap but very little in

estimating inflation is because the signal-to-noise ratio implied by the structural model is

considerably higher in the former. This is a result of the strong contemporaneous linkage

between unemployment and the output gap established by Okun’s Law. In the partial infor-

mation model the estimated value of the Okun coefficient χ is 0.3843. The relationship with

inflation, however, is far weaker since nominal factors only affect unemployment indirectly

by shifting output via the real interest rate. The estimate of the slope coefficient σ in the

IS equation is 0.0009. It follows that inflation-induced changes in the real interest rate will

have rather small effects on output and hence the unemployment rate.
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Table 1

Parameter Estimates

Model Parameter Partial Complete Partial Complete

Parameter Description Information Information Information Information

σy demand shock 0.6831
(0.0539)

0.7302
(0.0608)

0.6718
(0.0601)

0.7299
(0.0624)

σπ cost-push shock 0.9367
(0.1083)

1.0424
(0.1269)

0.9455
(0.1037)

1.0406
(0.1248)

σn natural output shock 0.5149
(0.0702)

0.2805
(0.0381)

0.4952
(0.1471)

0.2827
(0.0574)

σu natural unemployment shock 0.0790
(0.0313)

0.1678
(0.0233)

0.0308
(0.1251)

0.1674
(0.0212)

σg output growth noise 0.4229
(0.0280)

− 0.4428
(0.0435)

−

σp inflation noise 0.8780
(0.0641)

− 0.8808
(0.0664)

−

σi interest rate shock 0.8602
(0.0564)

0.6689
(0.0870)

0.8701
(0.0515)

0.6715
(0.0639)

ρg serial correlation in σg −0.1076
(0.0893)

− −0.0476
(0.1441)

−

ρp serial correlation in σp 0.0981
(0.0902)

− 0.1069
(0.0927)

−

ϕ expected future output 0.3610
(0.0049)

0.3770
(0.0053)

0.3493
(0.0032)

0.3775
(0.0058)

β lagged output 1.4752
(0.0073)

1.4448
(0.0091)

1.4934
(0.0093)

1.4448
(0.0089)

σ interest rate elasticity 0.0009
(0.0003)

0.0006
(0.0004)

0.0012
(0.0006)

0.0006
(0.0003)

α expected future inflation 0.4727
(0.0240)

0.5298
(0.0168)

0.4464
(0.0662)

0.5329
(0.0061)

κ output gap elasticity 0.0032
(0.0029)

0.0015
(0.0056)

0.0110
(0.0132)

8.99e-8
(2.35e-8)

θ lagged natural output 0.9107
(0.0116)

0.9273
(0.0155)

0.9138
(0.0097)

0.9269
(0.0192)

ηy demand shock feedback 0.3224
(0.0798)

0.4649
(0.0711)

0.3578
(0.0933)

0.4646
(0.0705)

χ Okun coefficient 0.3843
(0.0327)

0.4641
(0.0583)

0.4168
(0.1239)

0.4636
(0.0639)

δ loss discount factor 0.99∗ 0.99∗ 0.99∗ 0.99∗

λy output gap weight 0.2687
(0.1196)

0.1478
(0.5042)

0∗ 0∗,†

λi interest-rate smoothing weight 0.7578
(0.5318)

0.1552
(0.5258)

1.8982
(0.7170)

1.03e-5
(2.10e-7)

lnL log likelihood −671.2532 −445.1656 −675.5590 −445.2034

Notes: The table reports maximum-likelihood estimates of Eqs. (1) - (10) under partial and complete information. Numbers in
parentheses are standard errors. ∗ denotes a value that is imposed prior to estimation. †The restriction in this case is λy = 1e-5.
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Table 2

Policy-Rule Coefficient Estimates

Partial Information Complete Information

it = γyyt|t + γππt|t + γnynt|t + γyyyt−1|t + γiit−1 it = γyyt + γππt + γnynt + γyyyt−1 + γiit−1

Coefficient Optimal Unrestricted Optimal Unrestricted

γy 0.6784
(0.0555)

0.6641
(0.0721)

0.6385
(0.0892)

2.5171
(1.1078)

γπ 0.2940
(0.0315)

0.2944
(0.0509)

0.2684
(0.0471)

0.2757
(0.0902)

γn −0.1311
(0.0320)

−0.3480
(0.2561)

−0.2474
(0.0756)

−5.0534
(3.5627)

γyy −0.6629
(0.0526)

−0.6374
(0.0623)

−0.5617
(0.0792)

−2.4589
(1.1505)

γi 0.8575
(0.0167)

0.8561
(0.0219)

0.8770
(0.0239)

0.8988
(0.1672)

Notes: The table reports maximum-likelihood estimates of policy-rule coefficients under partial and complete information. In
each case the first set of estimates are the optimal coefficients implied by discretionary policy and the second are the unrestricted
estimates obtained by treating the policy equation as free. Numbers in parentheses are standard errors.
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Table 3

Parameter Estimates under Optimal and Unrestricted Policy

Model Parameter Partial Information Complete Information

Parameter Description Optimal Unrestricted Optimal Unrestricted

σy demand shock 0.6831
(0.0539)

0.6521
(0.0564)

0.7302
(0.0608)

0.6806
(0.0544)

σπ cost-push shock 0.9367
(0.1083)

0.9399
(0.1103)

1.0424
(0.1269)

1.0425
(0.1235)

σn natural output shock 0.5149
(0.0702)

0.3327
(0.1914)

0.2805
(0.0381)

0.1270
(0.0378)

σu natural unemployment shock 0.0790
(0.0313)

0.1446
(0.0639)

0.1678
(0.0233)

0.1832
(0.0122)

σg output growth noise 0.4229
(0.0280)

0.4387
(0.0300)

− −

σp inflation noise 0.8780
(0.0641)

0.8793
(0.0659)

− −

σi interest rate shock 0.8602
(0.0564)

0.8573
(0.0641)

0.6689
(0.0870)

0.1803
(0.6388)

ρg serial correlation in σg −0.1076
(0.0893)

−0.0656
(0.0918)

− −

ρp serial correlation in σp 0.0981
(0.0902)

0.1007
(0.0890)

− −

ϕ expected future output 0.3610
(0.0049)

0.3448
(0.0045)

0.3770
(0.0053)

0.4430
(0.0245)

β lagged output 1.4752
(0.0073)

1.5089
(0.0110)

1.4448
(0.0091)

1.2397
(0.0827)

σ interest rate elasticity 0.0009
(0.0003)

0.0007
(0.0005)

0.0006
(0.0004)

0.0013
(0.0029)

α expected future inflation 0.4727
(0.0240)

0.4630
(0.0301)

0.5298
(0.0168)

0.5383
(0.0219)

κ output gap elasticity 0.0032
(0.0029)

0.0033
(0.0036)

0.0015
(0.0056)

1.61e-9
(0.0005)

θ lagged natural output 0.9107
(0.0116)

0.9278
(0.0233)

0.9273
(0.0155)

0.2774
(0.2032)

ηy demand shock feedback 0.3224
(0.0798)

0.4175
(0.0875)

0.4649
(0.0711)

0.4015
(0.0780)

χ Okun coefficient 0.3843
(0.0327)

0.4302
(0.0506)

0.4641
(0.0583)

0.4280
(0.0339)

δ loss discount factor 0.99∗ − 0.99∗ −
λy output gap weight 0.2687

(0.1196)
− 0.1478

(0.5042)
−

λi interest-rate smoothing weight 0.7578
(0.5318)

− 0.1552
(0.5258)

−

lnL log likelihood −671.2532 −665.5937 −445.1656 −406.8995

BIC Bayesian information criterion −716.9690 −718.5277 −481.2570 −450.2092

M pseudo-posterior odds 0.8262 0.1738 0.0000 1.0000

Notes: The table reports maximum-likelihood estimates of Eqs. (1) - (10) under partial and complete information. In each case
the first set of estimates is obtained under discretion and the second set is obtained under the unrestricted policy. Numbers in
parentheses are standard errors. ∗ denotes a value that is imposed prior to estimation.
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Table 4

Summary Statistics: 1979:Q3 - 2010:Q1

Variable Mean SD Min Max AR

q̂t -1.06 4.49 -13.64 5.50 0.98

q̂t|t -1.84 4.19 -13.68 3.99 0.99

q̂t|t − q̂t -0.78 0.42 -1.59 0.45 0.93

π̂t 0.00 2.03 -4.25 8.09 0.84

π̂t|t 0.01 1.89 -2.27 6.62 0.92

π̂t|t − π̂t 0.01 0.72 -2.07 2.52 0.28

Notes: The sample consists of 123 quarterly estimates obtained from the Kalman smoother. q̂t and q̂t|t are estimates of the
actual and perceived values of the output gap (i.e., yt−ynt ), while π̂t and π̂t|t are estimates of the actual and perceived values of
inflation. The statistics shown for each variable are: Mean, the mean; SD, the standard deviation; Min and Max, the minimum
and maximum values; and AR, the first-order autocorrelation coefficient.
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Table 5

Variance Decompositions

qt|t − qt πt|t − πt

Forecast Horizon 1-Year 3-Year 10-Year 1-Year 3-Year 10-Year

demand shock 4.8445
(2.2782)

2.2682
(0.9873)

2.1647
(1.1688)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

cost-push shock 0.0082
(0.0167)

0.0090
(0.0184)

0.0091
(0.0185)

40.1764
(5.3094)

40.1763
(5.3093)

40.1762
(5.3092)

natural output shock 54.1239
(6.0727)

59.3571
(5.6982)

62.0603
(4.7606)

0.0000
(0.0001)

0.0002
(0.0004)

0.0004
(0.0008)

natural unemployment shock 35.7956
(6.4756)

35.5043
(6.5361)

34.1008
(6.4918)

0.0000
(0.0000)

0.0001
(0.0002)

0.0002
(0.0004)

output growth noise 5.2242
(1.9397)

2.8581
(1.2108)

1.6625
(1.0021)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

inflation noise 0.0036
(0.0073)

0.0029
(0.0059)

0.0026
(0.0053)

59.8235
(5.3095)

59.8234
(5.3096)

59.8232
(5.3098)

Notes: The table reports the percentage of the variances of output gap misperceptions (qt|t − qt) and inflation misperceptions
(πt|t − πt) attributed to each shock. Error variances are computed at a 1-year, 3-year, and 10-year forecast horizon for both
variables. Numbers in parentheses are standard errors obtained using the delta method.
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Table 6

Forward-Looking Indicators

Model Parameter Forward-Looking Indicators Predetermined Indicators

Parameter Description Partial Complete Partial Complete

σy demand shock 0.4632
(0.0309)

0.2730
(0.0225)

0.6831
(0.0539)

0.7302
(0.0608)

σπ cost-push shock 0.8728
(0.2862)

0.5642
(0.0730)

0.9367
(0.1083)

1.0424
(0.1269)

σn natural output shock 0.5491
(0.0672)

0.2918
(0.0448)

0.5149
(0.0702)

0.2805
(0.0381)

σu natural unemployment shock 0.0746
(0.0288)

0.1670
(0.0245)

0.0790
(0.0313)

0.1678
(0.0233)

σg output growth noise 0.4752
(0.0315)

− 0.4229
(0.0280)

−

σp inflation noise 0.8809
(0.0921)

− 0.8780
(0.0641)

−

σi interest rate shock 0.8721
(0.0596)

0.6763
(0.0873)

0.8602
(0.0564)

0.6689
(0.0870)

ρg serial correlation in σg 0.0094
(0.0940)

− −0.1076
(0.0893)

−

ρp serial correlation in σp 0.1200
(0.1118)

− 0.0981
(0.0902)

−

ϕ expected future output 0.3593
(0.0037)

0.3724
(0.0052)

0.3610
(0.0049)

0.3770
(0.0053)

β lagged output 1.4878
(0.0061)

1.4536
(0.0114)

1.4752
(0.0073)

1.4448
(0.0091)

σ interest rate elasticity 0.0012
(0.0004)

0.0006
(0.0004)

0.0009
(0.0003)

0.0006
(0.0004)

α expected future inflation 0.2320
(0.3482)

0.5217
(0.0162)

0.4727
(0.0240)

0.5298
(0.0168)

κ output gap elasticity 0.0237
(0.0231)

0.0057
(0.0040)

0.0032
(0.0029)

0.0015
(0.0056)

θ lagged natural output 0.9046
(0.0128)

0.9296
(0.0152)

0.9107
(0.0116)

0.9273
(0.0155)

ηy demand shock feedback 0.4307
(0.0901)

1.2176
(0.1986)

0.3224
(0.0798)

0.4649
(0.0711)

χ Okun coefficient 0.3582
(0.0237)

0.4578
(0.0577)

0.3843
(0.0327)

0.4641
(0.0583)

δ loss discount factor 0.99∗ 0.99∗ 0.99∗ 0.99∗

λy output gap weight 0.3232
(0.1103)

0.4242
(0.3510)

0.2687
(0.1196)

0.1478
(0.5042)

λi interest-rate smoothing weight 1.6568
(0.5735)

0.7382
(0.4440)

0.7578
(0.5318)

0.1552
(0.5258)

lnL log likelihood −725.2954 −447.8649 −671.2532 −445.1656

Notes: The table reports maximum-likelihood estimates of Eqs. (C.1), (C.2), and (3) - (10) as well as estimates of Eqs. (1) -
(10). In both cases the partial and complete information estimates are reported. Numbers in parentheses are standard errors.
∗ denotes a value that is imposed prior to estimation.
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Fig. 1. Panels (a) and (b) plot the ex post revised series for per capita real GDP growth, ∆yt, and GDP inflation, πt. Panels
(c) and (d) plot the series of historical revisions to real-time per capita GDP growth, ∆yot −∆yt, and GDP inflation, πo

t − πt.
Panels (e) and (f) plot changes in the civilian unemployment rate, ∆ut, and the annual yield on 3-month US Treasury bills, it.
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(a): Actual and Perceived Output Gap
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(b): Real−Time Perception Errors

Fig. 2. Panel (a) plots the estimates of the actual output gap (qt ≡ yt − ynt , solid line) and the perceived output gap
(qt|t ≡ yt|t−yn

t|t, dotted line) obtained from the Kalman smoother. Panel (b) plots estimates of the implied real-time perception

errors, qt|t − qt. The shaded regions correspond to NBER recessions.
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(a): Actual and Perceived Inflation
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(b): Real−Time Perception Errors

Fig. 3. Panel (a) plots the estimates of actual inflation (πt, solid line) and perceived inflation (πt|t, dotted line) obtained
from the Kalman smoother. Panel (b) plots estimates of the implied real-time perception errors, πt|t − πt. The shaded regions
correspond to NBER recessions.
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