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Appendix A. The Partial Information Model

We provide a comprehensive derivation of the empirical state-space model introduced in sec-

tion 4 of the manuscript. For the sake of completeness, we begin by restating the equations.

yt = ϕyt+1|t + (1− ϕ)[βyt−1 + (1− β)yt−2]− σ(it − πt+1|t) + εy,t (A.1)

πt = απt+1|t + (1− α)πt−1 + κ(yt − ynt ) + επ,t (A.2)

ynt = γynt−1 + εn,t + ηyεy,t (A.3)

ut − un
t = −χ(yt − ynt ) (A.4)

Lt = Et(1− δ)
∞∑
j=0

δj
[
(πt+j − π∗

t+j)
2 + λy(yt+j − ynt+j)

2 + λi(it+j − it+j−1)
2
]
(A.5)

π∗
t = ωπ∗

t−1 + d(πt−1 − π∗
t−1) (A.6)

∆yot = yt − yt−1 + vg,t (A.7)

πo
t = πt + vp,t (A.8)

vg,t = ρgvg,t−1 + εg,t (A.9)

vp,t = ρpvp,t−1 + εp,t (A.10)

∆ut = −χ(yt − ynt ) + χ(yt−1 − ynt−1) + εu,t (A.11)

In (A.1)–(A.11), yt and ynt are real and natural output, ut and un
t are the actual and natural

rates of unemployment, it is the nominal interest rate, πt is the inflation rate, π∗
t is the

central bank’s inflation target, εy,t is a demand shock, επ,t is a cost-push shock, εn,t is a

productivity shock, εu,t is the innovation to natural unemployment, ∆yot and πo
t are noisy

measures of output growth and inflation, vg,t and vp,t are the noise components, and εg,t and

εp,t are the innovations to those components. For any variable zt, zτ |t denotes E[zτ |Ωt], the

expected value of zτ conditional on date-t information Ωt. Lt is the policy loss function.

Define Xt = [εy,t επ,t y
n
t εu,t vp,t vg,t y

n
t−1 yt−1 yt−2 πt−1 π∗

t−1 it−1]
′ the (12 × 1) vector

of date-t predetermined variables, xt = [yt πt π
∗
t ∆ut]

′ the (4 × 1) vector of date-t forward-
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looking variables, and εt+1 = [εy,t+1 επ,t+1 εn,t+1 εu,t+1 εp,t+1 εg,t+1]
′ the (6 × 1) vector of

guassian shocks with covariance matrix Σ.

Our first task is to write (A.1)–(A.11) in terms of Xt and xt:

 Xt+1

Γxt+1|t

 = A1

 Xt

xt

+ A2

 Xt|t

xt|t

+Bit +

 Nεt+1

04×1

 , (A.12)

where A1, A2, B, Γ, N , and covariance matrix Σ are given by

A1 =



e0

e0

γe3

e0

ρpe5

ρge6

e3

e13

e8

e14

e15

e0

e13 − (1− ϕ)[βe8 + (1− β)e9]− e1

e14 − (1− α)e10 − κ(e13 − e3)− e2

−e15 + ωe11 + d(e10 − e11)

−e16 − χ(e13 − e3) + χ(e8 − e7) + e4



B =



0

0

0

0

0

0

0

0

0

0

0

1

σ

0

0

0


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Γ =



ϕ σ 0 0

0 α 0 0

0 0 0 0

0 0 0 0


A2 =

 012×12 012×4

04×12 04×4



N =



1 0 0 0 0 0

0 1 0 0 0 0

ηy 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



Σ =



σ2
y 0 0 0 0 0

0 σ2
π 0 0 0 0

0 0 σ2
n 0 0 0

0 0 0 σ2
u 0 0

0 0 0 0 σ2
p 0

0 0 0 0 0 σ2
g


,

where ej, j = 0, 1, ..., 16, denotes a 1 × 16 row vector with element j equal to one and all

other elements equal to zero (for j = 0, ej = 01×16).

The next task is to express the variables observed by the policymaker and private agents

as functions of the right-hand-side variables in (A.12). Let Zt = [∆yot πo
t ∆ut]

′. Then

Zt = [D1 D2]

 Xt

xt

 , (A.13)
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where D1 and D2 are defined as

D1 =


0 0 0 0 0 1 0 −1 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

 D2 =


1 0 0 0

0 1 0 0

0 0 0 1

 .

The third task is to determine the optimal setting of the interest rate under discretion.

It is useful to first write the loss function in terms of Xt and xt. Let Yt = [(πt − π∗
t ) (yt −

ynt ) (it − it−1)]
′ be the variables appearing in the loss function. Then

Yt = C1

 Xt

xt

+ C2

 Xt|t

xt|t

+ Ciit,

where C1, C2, and Ci are

C1 =


e14 − e15

e13 − e3

−e12

 C2 =

[
03×12 03×4

]
Ci =


0

0

1

 .

The loss function may then be written as

L0 = E

[
(1− δ)

∞∑
t=0

δtY ′
tWYt

∣∣∣Ω0

]
, (A.14)

where W is a diagonal matrix with non-zero elements (1, λy, λi). Optimal discretion implies

it = FXt|t, (A.15)

where F is the matrix that solves the Ricatti equation characterizing optimal policy.

Our fourth task is to characterize expectations under optimal policy. Estimates of the
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forward-looking variables are related to estimates of the predetermined variables by

xt|t = GXt|t, (A.16)

where G is a fixed point of the relation

G = (A22 − ΓGA12)
−1[(ΓGA11 − A21) + (ΓGB1 −B2)F ],

and {A11, A12, A21, A22, B1, B2} are partitions of A ≡ A1 +A2 and B conformable to Xt and

xt. It follows that the relationship between forward-looking and predetermined variables is

xt = G1Xt +G2Xt|t, (A.17)

where G1 and G2 satisfy G1 = −(A1
22)

−1A1
21 and G2 = G − G1. It also follows that under

optimal discretion, the evolution of the predetermined variables is governed by

Xt+1 = HXt + JXt|t +Nεt+1, (A.18)

where matrices H and J satisfy H = A1
11 + A1

12G
1 and J = A1

12G
2 + A2

11 + A2
12G+B1F .

Our fifth task is to explain how agents derive Xt|t. To accomplish this we need an

indicator with the property that its innovation is a linear function of the forecast error

Xt −Xt|t−1. Note that (A.13) and (A.17) imply that Zt does not meet this standard due to

the contemporaneous effect of Xt|t on Zt. Thus, we create an ideal indicator given by

Zt ≡ Zt −MXt|t = LXt, (A.19)

where L = D1 +D2G
1 and M = D2G

2. We can then express the optimal prediction of Xt
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in terms of the (steady-state) Kalman filter as follows:

Xt|t = Xt|t−1 +K(Zt − Zt|t−1)

= Xt|t−1 +KL(Xt −Xt|t−1), (A.20)

where the (12× 3) gain matrix K must be determined.

To find K, reformulate the problem in terms of prediction errors so that it admits a

state-space form. Let X̃t ≡ Xt−Xt|t−1 and Z̃t ≡ Zt−Zt|t−1, and write (A.13) and (A.18) as

Zt − Zt|t−1 = L(Xt −Xt|t−1) +M(Xt|t −Xt|t−1)

Z̃t = (I +MK)LX̃t = RX̃t (A.21)

and

Xt+1 −Xt+1|t = HXt + JXt|t +Nεt+1 −HXt|t − JXt|t

= H(Xt −Xt|t) +Nεt+1

= H(Xt −Xt|t−1 −KL(Xt −Xt|t−1)) +Nεt+1

= H(I −KL)(Xt −Xt|t−1) +Nεt+1

X̃t+1 = TX̃t +Nεt+1, (A.22)

where we have made use of (A.20) and defined R ≡ (I +MK)L and T ≡ H(I −KL).

Eqs. (A.22) and (A.21) are now the state and measurement equations for a standard

Kalman-filter problem with X̃t as the unobserved variable and Z̃t as the observed variable.

It follows that the prediction equation for X̃t is given by the standard formula for updating

a linear projection

X̃t|t = PR′(RPR′)−1RX̃t, (A.23)
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where we use the fact that X̃t|t−1 = 0. P ≡ Cov[X̃t − X̃t|t−1] = Cov[X̃t] = Cov[Xt −Xt|t−1]

is the (12× 12) covariance matrix of the prediction errors for X̃t, which are the same as the

prediction errors for Xt since X̃t|t−1 = 0. Rewrite (A.23) in terms of Xt and Xt|t−1 to obtain

Xt|t = Xt|t−1 + PR′(RPR′)−1R(Xt −Xt|t−1). (A.24)

A comparison (A.20) and (A.24) shows that the Kalman gain matrix must equal

K = PL′(LPL′)−1, (A.25)

where it remains to determine P . From (A.22) we get

Cov[X̃t+1] ≡ P = TPT ′ +NΣN ′ = H(I −KL)P (I −KL)′H ′ +NΣN ′

= H(P −KLP )(I − L′K ′)H ′ +NΣN ′

= H[P − PL′K ′ −KLP +KLPL′K ′]H ′ +NΣN ′

= H[P − PL′K ′ −KLP + PL′K ′]H ′ +NΣN ′

= H[P −KLP ]H ′ +NΣN ′

P = H[P − PL′(LPL′)−1LP ]H ′ +NΣN ′. (A.26)

Therefore, P is defined as the fixed point of (A.26).

The final task is to derive the augmented state-space model that we take to the data.

The transition equation is

st+1 = Mst +Nεt+1. (A.27)

The (24 × 1) state vector is st ≡ [X ′
t X ′

t|t−1]
′ and the (6 × 1) vector of shocks is εt+1 =
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[εy,t+1 επ,t+1 εn,t+1 εu,t+1 εp,t+1 εg,t+1]
′. The (24× 24) and (24× 6) matrices M and N are

M =

 H + JKL J(I −KL)

(H + J)KL (H + J)(I −KL)

 N =

 N

012×6

 .

The measurement equation is

yt = Tst + ut, (A.28)

where yt ≡ [Z ′
t i

o
t ∆yt πt]

′ and ut ≡ [0 0 0 ui,t 0 0]′. Let dt ≡ [iot ∆yt πt]
′. Then

dt = S

 Xt

xt

+ Siit + [ui,t 0 0]′

= S

 I 012×4

G1 G2


 Xt

Xt|t

+ SiFXt|t + [ui,t 0 0]′

=

S

 I 012×4

G1 G2


 I 012×4

KL I −KL

+ SiF [KL I −KL]


 Xt

Xt|t−1

+


ui,t

0

0


= Γd

 Xt

Xt|t−1

+ [ui,t 0 0]′, (A.29)

where matrices S and Si are given by

S =


e0

e13 − e8

e14

 Si =


1

0

0

 .
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Similarly, the indicators Zt can be expressed as

Zt = LXt +MXt|t

= LXt +M(Xt|t−1 +KL(Xt −Xt|t−1))

= [(I +MK)L M(I −KL)]

 Xt

Xt|t−1

 = Γz

 Xt

Xt|t−1

 . (A.30)

Stacking (A.30) and (A.29) yields (A.28) with (6× 24) matrix T defined as

T =

 Γz

Γd

 .

Appendix B. The Complete Information Model

Under complete information agents observe all of the variables comprising Xt and xt. The

behavioral relationships and the loss function given by (M-1)–(M-6) are exactly the same as

in the partial information model. To characterize the dynamics of the complete information

model, we appeal to the certainty equivalence principle. Specifically, optimal policy under

partial information is identical to the one under full information, except that one responds

to an efficient estimate of the state rather than the actual state. It follows that the recursive

equilibrium can be found by replacing Xt|t with Xt in (A.15), (A.17), and (A.18)

it = FXt (B.1)

xt = GXt (B.2)

Xt+1 = (H + J)Xt +Nεt+1, (B.3)

where G = G1 +G2 and H + J = A11 + A12G+B1F .
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It is straightforward to express the equilibrium in state-space form so that the parameters

can be estimated using maximum likelihood. Since beliefs about economic conditions are

always correct, there is no need to augment the state with efficient forecasts of the predeter-

mined variables as in (A.27). It follows that the transition equation is given by (B.3).

The measurement equation links the econometrician’s observed variables to Xt. As ex-

plained in section 4.1 of the manuscript, the variables relevant for estimation are d̃t ≡

[∆ut i
o
t ∆yt πt]

′. Under full information the model makes no distinction between the true

values of output growth and inflation and the observable concepts seen in real time, so the

shocks vg,t and vp,t in (A.7) and (A.8) equal zero every period. As a result, we discard the

real-time data on these variables and estimate the model using only the final published data.

Specifically, the measurement equation takes the form

d̃t = S̃

 Xt

xt

+ S̃iit + [0 ui,t 0 0]′

=

S̃

 I

G

+ S̃iF

Xt + [0 ui,t 0 0]′, (B.4)

where

S̃ =



e16

e0

e13 − e8

e14


S̃i =



0

1

0

0


.

The system given by (B.3) and (B.4) can then be used to evaluate the log-likelihood function.

Appendix C. An Estimate of the Gain Matrix

In this appendix we clarify how the indicator variables are used by private agents and the

central bank in revising forecasts of the state. The information is provided by estimates
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of an updating matrix U , which is a function of the Kalman gain matrix K described in

section 3.2 of the manuscript. Recall that inferences about Xt are updated according to

Xt|t = Xt|t−1 +KL(Xt −Xt|t−1). Rewriting this forecasting equation so that it depends on

innovations to the indicators Zt instead of innovations to Xt yields Xt|t = Xt|t−1 + U(Zt −

Zt|t−1), where it can be shown that U ≡ K(I+MK)−1. The (i,j) element of U is the weight

placed on innovations to the jth indicator on forecasts of the ith state variable. Given the

partial information estimates reported in Table 3 of the manuscript, the updating matrices

for the first and second subsamples are

U1 =



∆yot πo
t ∆ut

εy,t|t 0.2356
(0.1574)

0.0000
(0.0393)

−0.0648
(0.2255)

επ,t|t −0.0002
(0.0044)

0.3400
(0.0357)

0.0001
(0.0067)

yn
t|t 0.1857

(0.0737)
−0.0000
(0.0008)

0.4227
(0.3382)

εu,t|t 0.1438
(0.1426)

−0.0000
(0.0323)

0.7987
(0.3222)

vp,t|t −0.0002
(0.0043)

0.3336
(0.0508)

0.0001
(0.0066)

vg,t|t 0.4139
(0.1561)

0.0000
(0.0376)

0.3554
(0.2688)

yn
t−1|t −0.0826

(0.1594)
−0.0000
(0.0347)

0.3334
(0.4796)

yt−1|t −0.0310
(0.1650)

−0.0000
(0.0401)

0.5283
(0.3146)

yt−2|t 0.0066
(0.2011)

−0.0001
(0.0493)

0.7477
(0.3289)

πt−1|t −0.0000
(0.0008)

0.0640
(0.0213)

0.0000
(0.0013)

π∗
t−1|t −0.0000

(0.0000)
0.0003
(0.0001)

0.0000
(0.0000)

it−1|t 0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)



U2 =



∆yot πo
t ∆ut

εy,t|t 0.2166
(0.0143)

0.0102
(0.0036)

−0.2070
(0.0327)

επ,t|t −0.0052
(0.0037)

0.3945
(0.0893)

0.0263
(0.0156)

yn
t|t 0.3519

(0.0532)
−0.0205
(0.0080)

1.5941
(0.2927)

εu,t|t 0.0236
(0.0147)

−0.0004
(0.0004)

0.1128
(0.0693)

vp,t|t −0.0048
(0.0047)

0.3509
(0.0593)

0.0224
(0.0172)

vg,t|t 0.3925
(0.0335)

0.0064
(0.0026)

0.5815
(0.0801)

yn
t−1|t −0.1868

(0.0194)
−0.0153
(0.0083)

−0.4048
(0.1090)

yt−1|t −0.0805
(0.0186)

−0.0044
(0.0021)

0.1935
(0.0655)

yt−2|t −0.0818
(0.0161)

−0.0054
(0.0023)

0.2537
(0.0794)

πt−1|t −0.0006
(0.0011)

0.1607
(0.0510)

0.0193
(0.0100)

π∗
t−1|t 0.0001

(0.0001)
0.0020
(0.0007)

0.0008
(0.0007)

it−1|t 0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)



,

where standard errors (in parentheses) are found using the delta method.

Our estimates of U indicate that observed changes in the unemployment rate had very

different effects on perceptions of demand shocks, cost-push shocks, and natural output. A

unit innovation to ∆ut evidently caused agents to revise down their forecast of εy,t by 0.06

percentage points before 1979 but 0.21 percentage points after 1979. The impact on forecasts

of natural output was even more significant. Over the sample period agents updated their
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estimate of ynt by 0.42 percentage points in the pre-Volcker era and 1.59 percentage points

thereafter. Observations on the unemployment rate, however, appear to have had little

information content for cost-push shocks. Estimates of επ,t were revised up by only 0.03

percentage points after 1979 and essentially unchanged before that.

The reason why agents relied heavily on ∆ut in forming estimates of demand shocks

and natural output but very little in estimating cost-push shocks is because the signal-to-

noise ratio implied by the semi-structural model is considerably higher for the former. This

is a result of the strong contemporaneous linkage between unemployment and the output

gap established by Okun’s Law. In the partial information model the estimate of the Okun

coefficient χ is around 0.40. The relationship with cost-push shocks, however, is much weaker

since inflation only affects unemployment indirectly by shifting output via the real interest

rate. Estimates of the slope coefficient σ in the IS equation are quite small both before and

after 1979. It follows that changes in the real interest rate stemming from cost-push shocks

will have limited effects on output and hence the unemployment rate.

Appendix D. Estimates of Target Inflation

Section 5.1 of the manuscript presents empirical evidence of a shift in the weights charac-

terizing the Federal Reserve’s loss function at the time of Volcker’s appointment. In this

appendix we turn our attention to a different aspect of the loss function, namely, the time-

varying inflation target π∗
t . Our goal is to extract historical estimates of π∗

t from the ob-

servable macroeconomic data used to estimate the partial and complete information models.

To that end, we apply the Kalman smoother described in section 5.3 of the manuscript to

both models evaluated at their respective maximum-likelihood point estimates. In each case

we regard the estimated model as the true data generating process and use the smoother

to generate two-sided estimates of the unobserved inflation target from 1965:Q4 to 2010:Q1.

The two filtered series along with the actual inflation rate are graphed together in Fig. I.
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Fig. I. The historical inflation series (πt, solid line) is plotted against the Federal Reserve’s inflation target, π∗
t , as implied by

the estimated partial information model (dashed line) and the estimated complete information model (dotted line).

The partial and complete information models indicate that prior to 1979, the Fed’s im-

plicit inflation target was basically flat at around 5.6 percent even though actual inflation

trended sharply higher during the same period. We trace this result to the pre-1979 esti-

mates of ω, which converge to zero in both models. With the value of d fixed at 0.02, the

absence of any serial persistence in the stochastic process for π∗
t means that the inflation

target will vary little over the sample period.

The partial and complete information estimates of π∗
t split after the beginning of Volcker’s

term. According to the partial information model, there was a discrete drop in the inflation

target of more than two percentage points in late 1979. The next two decades witnessed
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a gradual decline in π∗
t to about 2.5 percent that mirrored the downward trend in actual

inflation. The post-1979 profile is quite different under complete information. According to

this model, the initial drop in target inflation was only about one percentage point and, in

turn, paved the way for a more rapid decline throughout the 1980s and 1990s.

Appendix E. A Constant Inflation Target

Some have argued that incorporating time variation in the central bank’s inflation target

can expose one’s model to identification problems. A prominent example from the recent

literature is the idea that the model might attribute persistence in the inflation data to drift

in the target rather than lags in the behavioral equations. Another raises the possibility

that the observed co-movement between output and inflation could potentially be explained

by the type of policy tradeoffs reflected in the loss function weights or simply by procyclical

variation in the inflation target. The point here is that a moveable inflation target will

undoubtedly compete with other features of the model in an effort to maximize goodness-

of-fit. Unfortunately, expanding one’s model in ways that permit multiple interpretations of

the data can make estimation of all the structural parameters a more difficult task.

To see whether the time-varying nature of π∗
t makes identification problematic, we re-

estimate both the partial and complete information models under the assumption of a fixed

inflation target. In practice this done by restricting ω = d = 0 in (A.6). Since the observable

data are de-meaned prior to estimation, fixing π∗
t = 0 also ensures that target inflation will

correspond to the sample mean. The full set of estimation results for the periods before and

after 1979 are reported in Table I.

For the pre-1979 period we see that the estimates under a constant inflation target are

nearly identical to the benchmark estimates found in Table 3 of the manuscript. This result

is not surprising given that ω, the persistence in the inflation target, converges to zero in

the course of estimating the benchmark partial and complete information models. With the
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Table I

Fixed inflation target

Partial Information Complete Information

1965:Q4– 1979:Q3– 1965:Q4– 1979:Q3–

Parameter Description 1979:Q2 2010:Q1 W 1979:Q2 2010:Q1 W

σy demand shock 0.6457
(0.0507)

0.4631
(0.0245)

0.0012 0.6014
(0.0747)

0.2729
(0.0180)

0.0000

σπ cost-push shock 0.9691
(0.0799)

0.8741
(0.1292)

0.5318 0.8848
(0.1026)

0.5636
(0.0381)

0.0033

σn natural output shock 0.1594
(0.2285)

0.5498
(0.0607)

0.0987 0.1901
(0.1071)

0.2885
(0.0457)

0.3980

σu natural unemployment shock 0.2083
(0.0420)

0.0753
(0.0224)

0.0052 0.1543
(0.0821)

0.1677
(0.0200)

0.8743

σg output growth noise 0.7681
(0.0734)

0.4754
(0.0313)

0.0002 − − −
σp inflation noise 0.9685

(0.1009)
0.8808
(0.0637)

0.4623 − − −
σi interest rate shock 0.4890

(0.0504)
0.8711
(0.0580)

0.0000 0.8211
(0.0814)

0.6732
(0.0578)

0.1385

ρg serial correlation in σg 0.0092
(0.1438)

0.0105
(0.0915)

0.9941 − − −
ρp serial correlation in σp 0.0973

(0.1404)
0.1201
(0.0934)

0.8928 − − −
ϕ expected future output 0.3871

(0.0072)
0.3595
(0.0037)

0.0006 0.4425
(0.0611)

0.3726
(0.0053)

0.2543

β lagged output 1.4194
(0.0071)

1.4867
(0.0055)

0.0000 0.9537
(0.0818)

1.4522
(0.0091)

0.0000

σ interest rate elasticity 1.63e-6
(0.0048)

0.0012
(0.0004)

0.8049 0.1222
(0.0642)

0.0005
(0.0003)

0.0580

α expected future inflation 0.5533
(0.0191)

0.2298
(0.1685)

0.0566 0.5652
(0.0295)

0.5220
(0.0157)

0.1958

κ output gap elasticity 4.15e-5
(1.70e-5)

0.0236
(0.0139)

0.0889 0.0212
(0.0075)

0.0055
(0.0034)

0.0574

γ lagged natural output 0.8082
(0.0535)

0.9051
(0.0189)

0.0880 0.6222
(0.0961)

0.9291
(0.0202)

0.0017

ηy demand shock feedback 0.9095
(0.0527)

0.4287
(0.0883)

0.0000 1.1568
(0.1619)

1.2187
(0.1687)

0.7913

χ Okun coefficient 0.4526
(0.0494)

0.3576
(0.0223)

0.0793 0.7078
(0.1397)

0.4585
(0.0389)

0.0856

λy output gap weight 0.0339
(0.0627)

0.3534
(0.1201)

0.0183 0† 0.4327
(0.3190)

0.1750

λi interest-rate smoothing weight 0.001† 1.8136
(0.5792)

0.0018 2.2225
(1.0594)

0.7387
(0.4617)

0.1992

ω inflation target persistence 0.00∗ 0.00∗ − 0.00∗ 0.00∗ −
d inflation target accommodation 0.00∗ 0.00∗ − 0.00∗ 0.00∗ −
δ loss discount factor 0.996∗ 0.996∗ − 0.996∗ 0.996∗ −
lnL log likelihood −359.0360 −725.1390 −236.5486 −447.3827

Notes: The table reports maximum-likelihood estimates of (M-1 )–(M-6) and (I-1)–(I-3) under partial and complete information.
Numbers in parentheses are standard errors. The columns labeled W contain the p-values of the Wald statistic for testing the
null hypothesis of parameter stability. ∗ denotes a value that is imposed prior to estimation. † denotes a value that lies on the
boundary of the allowable parameter space.
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value of d having already been fixed at 0.02, ω = 0 implies that there will be almost no

variation in π∗
t over the sample (see Fig. I in Appendix D). Thus at least for the pre-Volcker

era, inserting a time-varying inflation target into the loss function does not appear to create

any new identification problems.

Data from the post-1979 period evidently favors much greater persistence in the inflation

target since the unrestricted estimates of ω are close to one in both the partial and complete

information cases. That being said, imposing ω = d = 0 does not alter the central results

of our estimation. Parameters that are perhaps most affected by fixing the inflation target

are the loss function weights, λi and λy. Under partial information holding π∗
t constant

increases estimates of both weights relative to their benchmark values. In other words, the

Federal Reserve’s preference for inflation stability relative to its other two goals is somewhat

diminished when the model prohibits variation in the inflation target. The magnitude of these

changes, however, appear rather limited, so we conclude that the model’s basic interpretation

of the data is the same with or without a time-varying inflation target. Finally, notice that

estimates of the parameter standard errors are also similar to the benchmark results. This

suggests that relaxing the assumption of a fixed inflation target probably does not weaken

identification of our model.

Appendix F. Robustness Checks

In this appendix we examine the robustness of our partial information estimates to changes

in the processes governing inflation measurement shocks as well as the natural unemployment

rate. The benchmark model described in section 2 of the manuscript treats the noise com-

ponent of πo
t as a stationary first-order autoregressive shock. In what follows we re-estimate

the model conditional on a stationary ARMA(1,1) process for this component given by

vp,t = ρpvp,t−1 + εp,t − µεp,t−1 with εp,t ∼ i.i.d. N(0, σ2
p). Our new specification nests the

AR(1) arrangement as a special case (µ = 0) but allows for the possibility that vp,t also has
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Table II

Sensitivity analysis

1979:Q3–2010:Q1

Parameter Description vp,t ∼ ARMA(1,1) un
t ∼ AR(1)

σy demand shock 0.4616
(0.0245)

0.4592
(0.0245)

σπ cost-push shock 0.8846
(0.1328)

0.9354
(0.1517)

σn natural output shock 0.5749
(0.0702)

0.5519
(0.0720)

σu natural unemployment shock 0.0784
(0.0240)

0.0749
(0.0258)

σg output growth noise 0.4707
(0.0311)

0.4705
(0.0310)

σp inflation noise 0.8673
(0.0619)

0.8650
(0.0599)

σi interest rate shock 0.8413
(0.0566)

0.8399
(0.0556)

ρg serial correlation in σg −0.0151
(0.0927)

−0.0184
(0.0928)

ρp serial correlation in σp −0.4410
(0.3223)

0.1071
(0.0901)

µ moving average in σp 0.6170
(0.2798)

−
ρn serial correlation in σu − 0.9915

(0.0094)

ϕ expected future output 0.3577
(0.0040)

0.3574
(0.0041)

β lagged output 1.4872
(0.0057)

1.4854
(0.0062)

σ interest rate elasticity 0.0009
(0.0003)

0.0008
(0.0003)

α expected future inflation 0.2147
(0.1696)

0.1490
(0.1868)

κ output gap elasticity 0.0214
(0.0130)

0.0180
(0.0133)

γ lagged natural output 0.9020
(0.0184)

0.9002
(0.0179)

ηy demand shock feedback 0.4208
(0.0921)

0.4410
(0.0885)

χ Okun coefficient 0.3436
(0.0242)

0.3569
(0.0280)

λy output gap weight 0.2256
(0.0724)

0.1812
(0.0888)

λi interest-rate smoothing weight 1.1437
(0.5376)

0.8362
(0.6219)

ω inflation target persistence 0.9707
(0.0141)

0.9807
(0.0129)

d inflation target accommodation 0.02∗ 0.02∗

δ loss discount factor 0.996∗ 0.996∗

lnL log likelihood −720.8378 −722.0660

Notes: The table reports maximum-likelihood estimates of (M-1)–(M-6) and (I-1)–(I-3) under partial information. The first
column of estimates allow inflation measurement shocks to follow the stationary ARMA(1,1) process vp,t = ρpvp,t−1 + εp,t −
µεp,t−1. The second column allows natural unemployment to follow the stationary AR(1) process un

t = ρnun
t−1+εu,t. Numbers

in parentheses are standard errors. ∗ denotes a value that is imposed prior to estimation.
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a moving average element. The findings are reported in the first column of Table II.

Modifying the law of motion for vp,t affects estimates of ρp and µ but does not have a

major impact on the remaining parameters nor does it significantly improve model fit. The

point estimate of ρp is now −0.44 rather than 0.11, indicating that measurement shocks may

actually exhibit negative serial correlation. Moreover, the estimate of the moving average

coefficient µ is 0.62. Because the ARMA(1,1) specification nests the benchmark AR(1)

arrangement, we can conduct a formal likelihood ratio test of the null hypothesis that µ = 0.

The p-value of the relevant chi-square statistic is 0.09, so we reject the null restriction at the

10 percent level but not at the 5 percent level.

In our original setup fluctuations in the natural rate of unemployment follow a pure

random walk. Although we cite a number of empirical studies to justify this modeling choice

in the manuscript, one potential drawback is that the observed unemployment rate inherits

a unit root directly from un
t via the Okun’s Law relationship (M-4). We now examine the

implications of imposing stationarity on ut by conditioning estimation on the assumption

that natural unemployment follows an AR(1) process un
t = ρnu

n
t−1 + εu,t with |ρn| < 1 and

εu,t ∼ i.i.d. N(0, σ2
u). The estimates are reported in the second column of Table II.

Comparing these results to the ones in Table 3 of the manuscript reveals that our random

walk assumption has little effect on the majority of parameter estimates and does not appear

to harm model fit. The similarity between the two sets of results is perhaps not surprising

given that the point estimate of ρn exceeds 0.99 and is not significantly different from one.

Indeed, a likelihood ratio test of the restriction ρn = 1 cannot be rejected at standard

significance levels. Thus while the assumption of a nonstationary unemployment rate may

be theoretically undesirable, in practice we find that it does not compromise the central

findings of our study.

19


