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Appendix A. Representative agent model

In this section we describe the general equilibrium model estimated in section 3.3 of

Givens and Salemi (2007). A variant of the prototype New Keynesian model expounded by

Goodfriend and King (1997) and Rotemberg and Woodford (1997)), the model integrates

staggered price-setting and monopolistic competition into an optimizing-agent framework.

In what follows we discuss the assumptions concerning preferences and price setting and

derive the key equilibrium conditions that give rise to the equations in the text.

A.1. The household sector

The economy is inhabited by a large number of identical households that make intertem-

poral consumption and saving decisions and supply labor to the production sector. The

preferences of the representative household are given by

E0

∞∑
t=0

βt {U (Ct − bCt−1; ut)− ν (Ht)} (A.1)

where U is a monotonic and strictly concave period utility function defined over sequences of
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consumption Ct relative to an internal habit stock bCt−1. Ct is the following CES aggregator

of differentiated goods:

Ct =

(∫ 1

0

ct(i)
η−1

η di

) η
η−1

and Pt =
(∫ 1

0
pt(i)

1−ηdi
) 1

1−η
is the aggregate price index, where pt(i) denotes the price of

good i ∈ [0, 1]. The parameter η > 1 is the elasticity of substitution between alternative

varieties while b ∈ (0, 1) measures the degree of habit persistence. The stochastic variable

ut is a white-noise taste shock that generates exogenous variation in the marginal utility

of income for given levels of consumption. The function ν denotes the period disutility of

supplying work hours Ht and is strictly increasing and convex.

The household’s flow budget constraint takes the following form:

Ct +
Bt

Pt

≤ WtHt +
Rt−1Bt−1

Pt

+

∫ 1

0

Divt(i)di (A.2)

where Bt−1 denotes the quantity of riskless, one-period bonds carried into period t and Rt−1

is the corresponding gross nominal interest rate. WtHt represents labor income and Divt(i)

is a stream of real profits from ownership of firm i.

The representative household chooses an optimal plan {Ct, Ht, Bt}∞t=0 by maximizing

(A.1) subject to (A.2) taking as given the processes {Pt, Rt,Wt, Divt(i) : i ∈ [0, 1]}∞t=0 and

the initial values B−1, R−1, and C−1. The first-order conditions are given by

Uc (Ct − bCt−1; ut)− βbEtUc (Ct+1 − bCt; ut+1) = Λt (A.3)

Λt = βEt

[
Λt+1Rt

Pt

Pt+1

]
(A.4)

Wt =
νH(Ht)

Λt

(A.5)
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where Λt is the Lagrange multiplier associated with (A.2). To obtain equation (21) in

the text, we combine the log-linear approximations of (A.3) and (A.4) together with the

equilibrium requirement Yt = Ct.

A.2. The production sector

Monopolistically competitive firms produce differentiated goods using the technology

Yt(i) = exp(vt)Kt(i)
αHt(i)

1−α (A.6)

where α ∈ (0, 1) is the capital elasticity of output and vt is a serially uncorrelated productivity

disturbance. Although we assume that the aggregate capital stock is fixed at K̄, capital and

labor are perfectly mobile, enabling firms to adjust input quantities in a way that equalizes

capital-to-labor ratios. Consequently, equilibrium will feature common real marginal costs

per unit of output across industries, which can be expressed as

MCt =
Wt

(1− α) exp(vt)

(
Ht

K̄

)α

. (A.7)

Sticky prices are modeled in the fashion of Calvo (1983). Firms face a constant probability

(1 − ε) in each period of realizing an opportunity to reset their price pt(i), independent of

the time elapsed since their previous adjustment. Firms that do not reset optimally use the

following indexation rule to update existing prices:

pt(i) = Πγ
t−1 × pt−1(i) (A.8)

where Πt = Pt/Pt−1 and γ ∈ [0, 1] measures the degree of indexation to past inflation. Let

p̃t denote the optimal value of pt(i) chosen by all firms that adjust in period t. Firms select
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p̃t to maximize the present value of expected future real profits given by

Et

∞∑
j=0

(εβ)j Λt+j

Λt

Yt+j(i)

{
p̃t

Pt+j

(
j−1∏

k=0

Πγ
t+k

)
−MCt+j

}
. (A.9)

The first-order condition with respect to p̃t can be expressed as

Et

∞∑
j=0

(εβ)jΛt+jYt+j(i)

{
p̃t

Pt

(
j∏

k=1

Π−1
t+k

)(
j−1∏

k=0

Πγ
t+k

)
− η

η − 1
MCt+j

}
= 0. (A.10)

Using the definition of the aggregate price index, it is clear that the evolution of the price

level over time must satisfy

P 1−η
t = (1− ε)p̃1−η

t + ε
(
Πγ

t−1 × Pt−1

)1−η
. (A.11)

To obtain equation (22) in the text, we combine the log-linear approximations of (A.7),

(A.10), and (A.11) together with the equilibrium requirement Yt = Ct.

A.3. The flexible price equilibrium

To evaluate the welfare cost of alternative policies using a quadratic approximation to

(A.1), it is necessary to track the dynamic behavior of the model’s flexible price equilibrium.

Suppose that all firms reset prices optimally every period (ε → 0), implying that pt(i) =

p̃t = Pt for all i ∈ [0, 1]. It follows that equation (A.10) will collapse to the familiar markup

condition, MCt = η−1
η

, and every firm will produce identical quantities.

Denote Y n
t the flexible price level of output. It can be shown that Y n

t is determined

implicitly by the following condition:

(
η − 1

η

)
(1− α) exp(vt)

(
K̄

Ht

)α

=
νH(Ht)

Λt

(A.12)
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after eliminating Ht using the aggregate relationship Yt = exp(vt)K̄
αH1−α

t . Equation (23)

in the text is simply the log-linear approximation of (A.12).

Appendix B. A comparison of GMM and FIML

In this section we compare the performance of the GMM procedure developed by Givens

and Salemi (2007) to that of a full information maximum likelihood (FIML) strategy that

nests the control problem of the central bank within the estimation exercise of the econo-

metrician.1 The nested approach searches over values of the structural parameters and

loss function weights for those that maximize the likelihood function while constraining the

policy-rule coefficients to be those that minimize expected loss. Nesting the control problem

requires one to compute optimal policy-rule coefficients for every set of structural parameters

and loss function weights considered in the course of estimation. GMM, on the other hand,

combines least squares normal equations with the first order conditions for optimal policy

and, in a sense, moves gradually toward estimates that satisfy both criteria rather than fully

satisfying the optimal policy criterion for each set of parameters considered.

In the paper, we demonstrated GMM on three different New Keynesian-style models.

For a comparison of GMM with FIML, however, we focus exclusively on the forward-looking

model studied in section 3.2. We feel that the marginal benefits of providing comparisons for

the backward-looking and representative agent models are relatively small. The differences

and similarities between GMM and FIML identified in the context of the forward-looking

model are also likely to appear in the other two models.

B.1. Computation speed

We first compare GMM and FIML according to the computation time required by each

procedure. Recall that GMM estimation of the forward-looking model requires a search over

1Salemi (2006) and Dennis (2004) use the nested strategy to describe Federal Reserve policy between
1965 and 2001.
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13 parameters: 7 parameters of the structural equations, 2 loss function weights, and 4 policy-

rule coefficients. The reduced-form error covariance matrix, which is needed for computing

the partial derivatives of expected loss, can be obtained at each step from the residual-error

covariance matrix. Estimation by FIML, however, requires a search over 17 parameters: 7

parameters of the structural equations, 2 loss function weights, and 6 parameters that pin

down the reduced-form error covariance matrix. The 4 policy-rule coefficients are determined

internally as the solution to the loss minimization problem. Thus, estimation by GMM

actually requires a search over fewer parameters than FIML. However, the GMM procedure

must be repeated twice in order to obtain consistent estimates. In the first stage the identity

matrix is used as the GMM weighting matrix. In the second stage the optimal weighting

matrix is computed and then parameter estimation is repeated.

Given the asymmetries in the estimated parameter space, how much computation time

is required by each procedure? When the optimality hypothesis is true, GMM and FIML

require approximately the same amount of computation time. The average number of seconds

per sample, computed across 20 trials each of sample sizes 100, 250, 500, and 1,000, was 303

seconds under GMM and 234 seconds under FIML.2 When the optimality hypothesis is

false, GMM requires much less computation time than FIML. For a sample size of 1,000,

the average number of seconds per sample computed across 50 trials was 793 seconds under

FIML and 179 seconds under GMM. We conjecture that the ratio of computation time for

GMM and FIML falls as the difficulty of the loss minimization problem increases. The

control problem will be more difficult when the number of policy-rule coefficients is larger

or when the optimality hypothesis is false.

B.2. Estimation accuracy

We next compare the accuracy of parameter estimates obtained under GMM and FIML

2Estimation was performed with Visual Fortran Professional Edition 6.0.A on an IBM desktop computer
with an Intel Pentium 4 CPU rated at 1.6 GHz and 1.25 GB of RAM.
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by conducting Monte Carlo experiments with two different assumption about policy. In

the first case, the true policy-rule coefficients are optimal for a given loss function. In the

second case, the true policy coefficients are not optimal for any loss function in the family we

consider. For sample sizes of 100 and 1,000, Table 13 reports findings for the case in which

the optimality hypothesis is true.3 At both sample sizes, FIML and GMM return unbiased

estimates of the structural parameters, loss function weights, and policy-rule coefficients that

converge to the true values with sample size. At sample sizes of 100, FIML estimation results

in smaller standard errors in general and especially for the loss function weights. For sample

sizes of 1,000, however, GMM estimation results in smaller bias and smaller standard errors

for several key parameters and comparable bias and standard errors for the others.

Table 14 reports findings for the case in which the optimality hypothesis is false.4 Under

FIML and GMM, imposing optimal policy restrictions when they are false generates bias in

the estimates of some structural parameters. For example, the GMM estimate of λ is too

small, indicating a reduced role for expected future output in the IS equation. The FIML

estimate of λ is accurate but the estimate of a1 is too low, pointing to a smaller impact of

lagged output. Both procedures bias the estimate of β, the slope coefficient in the Phillips

curve, towards zero. Both procedures also return biased estimates of the loss function weights

that imply almost no concern for stabilizing the output gap or the nominal interest rate.

There is one major difference in the outcome of the two procedures when false optimality

restrictions are imposed. GMM yields unbiased and efficient estimates of the policy-rule

coefficients at all sample sizes. In contrast, the FIML estimates of the policy coefficients are

significantly biased. The standard errors for the GMM estimates range between 0.02 and

0.08 when the sample size is 1,000. The FIML standard errors, however, are much larger,

ranging between 0.25 and 0.70. Thus, a researcher using GMM could be confident that

3The parameterization of the forward-looking model is the same one described in Table 3 of section 3.2.
4The parameterization of the forward-looking model is the same one described in Table 4 of section 3.2.
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policy-rule coefficient estimates were accurate regardless of whether or not the optimality

hypothesis were true. The researcher using FIML could not be.

B.3. Further discussion of GMM results

Here we explain why GMM, in contrast to other estimators, consistently returns unbiased

estimates of policy-rule coefficients but biased estimates of some structural parameters when

the optimal policy hypothesis is false. To guide us in this part of the analysis, we estimated

the forward-looking model subject to the optimal policy restrictions for a synthetic data set

with 10,000 observations. After obtaining parameter estimates, we recorded the (16 × 16)

optimal weighting matrix and the (16×13) matrix of partial derivatives of the GMM sample

moments with respect to the estimated parameter vector. This exercise was conducted for

the case where the optimal policy restriction was true and also for the case where it was

false. A comparison of the output from both cases revealed several relevant points.

First, the (4 × 4) partition of the GMM weighting matrix corresponding to the partial

derivatives of expected loss has elements that are large relative to elements outside the

partition. For the case in which the optimality hypothesis is true, the diagonal elements of

the (4×4) partition are on the order of 105 while the elements outside the partition are on the

order of 101. This divergence occurs because variation in the partial derivatives across sample

observations is much smaller than variation in the correlation between the residuals and the

regressors. For the case in which the optimality hypothesis is false, the ratio of diagonal

elements inside and outside the partition is even larger. Because the optimal weighting matrix

places considerable weight on the sample moments associated with the partial derivatives of

expected loss, GMM essentially “tries harder” during the second iteration to set the partial

derivatives to zero than to satisfy the least-squares normal equations. It does so by locating

false values of the structural parameters that make the observed policy embedded in the

reaction function coefficients appear optimal.
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Second, the (16 × 13) matrix of partial derivatives of the GMM sample moments with

respect to the estimated parameter vector reveals that each parameter has a sizeable marginal

effect on the moment conditions when the optimality hypothesis is true. Small adjustments in

the parameters appearing in the IS equation and the Phillips curve, for instance, have a large

impact on the partial derivatives of expected loss and on the correlations involving the output

and inflation residuals. The situation is very different when the optimality hypothesis is false.

For example, the partial derivatives of the residual correlation moments with respect to λ

and β are zero. Meanwhile, the marginal effect of both parameters on the partial derivatives

of expected loss is substantial. In contrast, marginal changes in all of the other parameters

of the model affect both sets of moment conditions simultaneously. It is as if GMM has

assigned λ and β only one task–to satisfy the policymaker’s first order conditions–and has

discovered a parameterization that minimizes the cost of this assignment. Not surprisingly,

these are precisely the two parameters which display the most severe asymptotic bias.

Appendix C. Other issues relating to GMM

In this section we address two issues concerning the implementation of the GMM strategy

introduced in Givens and Salemi (2007). First, the observation that policy-rule coefficients

are always estimated without bias suggests that it may be desirable to perform estimation in

two steps. In the first step, estimates of the structural parameters and policy-rule coefficients

can be obtained from the least-squares normal equations alone. The loss function weights can

then be retrieved from the information contained in the policymaker’s first order conditions

while holding the first step estimates fixed. Second, it is common knowledge that estimation

of economic models like the ones examined here are often sensitive to starting values. Thus,

we check the robustness of our Monte Carlo results to variation in starting values.

C.1. A comparison of GMM and a two step procedure

We compare the performance of our unified approach to estimation with GMM to a two
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step procedure used often in econometric policy evaluation. In the first step, structural

parameters and policy-rule coefficients are estimated simultaneously and without imposing

the optimal-policy restrictions. In the second step, the loss function weights are estimated

while holding the first step estimates fixed. To implement the second step, we search over

loss function weights for values that minimize a GMM criterion based solely on the partial

derivatives of expected loss. Our belief is that the two step procedure should not perform

as well as joint estimation with GMM when the hypothesis of policy optimality is true

because the first-order conditions carry information that aids in the estimation of the model’s

structural parameters.

Table 15 shows that both procedures yield unbiased estimates of all parameters including

the loss function weights, although the standard errors tend to be smaller when the optimal

policy restrictions are imposed during estimation. The improvement in precision, even in

samples as large as 10,000, comes from the additional information contained in the partial

derivatives.

Table 16 reports a comparison of the partial derivative estimates for the unified and two

step procedures and provides additional evidence that the former generates a more accurate

picture of the data. It is clear that a two step approach would lead the researcher to the

erroneous conclusion that the policymaker’s first order conditions were not satisfied. At

a sample size of 1,000, the mean absolute value of partial derivative estimates computed

across policy-rule coefficients exceeds 100. Only at a sample size of 10,000 do the two

step estimates of the partial derivatives approach zero. Consequently, a test of the model’s

over-identifying restrictions using the two-step estimates is very likely to reject the optimality

hypothesis when it is true. Suppose we test the policy-optimality hypothesis using the GMM

Q statistic obtained in the second stage of estimation. Under the null hypothesis, T ×Q is

distributed chi-squared with two degrees of freedom since there are four partial derivatives

and two estimated loss function weights. For the samples reported in Table 16, the optimality
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hypothesis would be rejected in 91 percent of samples of size 100, 99 percent of samples of

size 1,000, and 100 percent of samples of size 10,000. As Table 5 of the paper makes clear,

however, rejection rates for the over-identifying restrictions of the forward-looking model are

much smaller when true optimal policy restrictions are imposed during GMM estimation.

C.2. Robustness to starting values

In this section we document the robustness of our findings to changes in parameter

starting values. To examine how sensitive the results are to different initial values, we

conduct a Monte Carlo experiment in which the structural parameters are reset to values

either ten percent below or ten percent above the original starting values. We nest starting-

value changes and draw two samples each of 64 different starting value combinations. For

each sample, we set the starting values of the policy-rule coefficients to 0.01 and the starting

values of the loss function weights to 1.0 so that each stabilization objective was equally

weighted at the outset. We varied the sample size between 100 and 5,000.

We report our findings in Table 17. To facilitate comparisons, we display some values

from Table 3 which reports findings based on our original starting values. The results clearly

demonstrate that our estimates are robust to variation in starting values. Indeed, the results

in the left and right panels are very similar in small samples and nearly identical in large

samples.

We do not claim that the GMM procedure works well for arbitrary starting values. In

particular, it is essential that the researcher choose starting values that satisfy the saddlepath

restriction discussed by Blanchard and Kahn (1980) and others. If those values imply too

many unstable roots, it is difficult for the algorithm to locate the stable region of the param-

eter space. If they imply too few unstable roots, it is sometimes difficult for the algorithm

to locate the region of the parameter space where a unique stable solution resides.
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Table 1. Backward-looking model

True Optimality Restriction (True): Optimality Restriction (True):
(ρ, θ, W ) Value Not Imposed Imposed

sample size sample size
100 250 500 5000 100 250 500 5000

a 0.90 0.916 0.890 0.898 0.900 0.918 0.892 0.899 0.900
(.23) (.04) (.03) (.01) (.19) (.04) (.03) (.01)

b 0.15 0.349 0.163 0.169 0.150 0.269 0.171 0.179 0.150
(.77) (.13) (.09) (.03) (.53) (.12) (.09) (.03)

α 0.50 0.495 0.493 0.494 0.500 0.497 0.493 0.496 0.500
(.09) (.06) (.04) (.01) (.09) (.06) (.04) (.01)

β 0.10 0.101 0.105 0.106 0.099 0.087 0.107 0.106 0.099
(.08) (.05) (.04) (.01) (.07) (.06) (.04) (.01)

Wy 0.10 – – – – 0.066 0.131 0.129 0.111
(.24) (.23) (.14) (.05)

Wr 0.30 – – – – 0.181 0.452 0.444 0.320
(.33) (.48) (.41) (.12)

θy 0.306 0.291 0.306 0.306 0.308 0.296 0.304 0.305 0.308
(.09) (.05) (.03) (.01) (.08) (.05) (.03) (.01)

θπ 0.102 0.116 0.097 0.107 0.101 0.121 0.110 0.115 0.101
(.11) (.07) (.04) (.01) (.10) (.06) (.04) (.01)

Q .24e-2 .87e-4 .62e-5 .13e-17 .64e-2 .22e-2 .69e-3 .17e-8
Fraction 1.00 1.00 1.00 1.00 0.83 0.85 0.95 1.00

1. For the case in which the hypothesis of policy optimality is true, the table reports estimates of the
following model: yt = ayt−1− b(rt−πt)+ut, πt = απt−1 +βyt + vt, rt = θyyt−1 + θππt−1 +wt. The variables
are defined as: y - output, π - inflation, r - interest rate. Wy and Wr are the loss function weights for y and
r normalized by the unit weight attached to π.

2. Q is the GMM estimation criterion and Fraction reports the fraction of trials that result in no
outliers.

3. The parenthesis contain standard errors computed across Fraction × 100 trials for each sample
size.
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Table 2. Backward-looking model

True Optimality Restriction (False):
(ρ, θ, W ) Value Imposed

sample size
100 250 500 5000

a 0.90 0.875 0.886 0.891 0.898
(.06) (.04) (.02) (.01)

b 0.15 0.138 0.144 0.141 0.146
(.06) (.03) (.02) (.01)

α 0.50 0.485 0.483 0.485 0.487
(.09) (.06) (.04) (.01)

β 0.10 0.047 0.035 0.030 0.026
(.05) (.02) (.01) (.004)

Wy 0.10 0.4e-6 0.67e-6 0.17e-17 0.9e-18
(.3e-5) (.6e-5) (.2e-17) (.11e-17)

Wr 0.30 0.003 0.25e-2 0.22e-2 0.2e-2
(.002) (.07) (.001) (.01)

θy 0.20 0.177 0.182 0.184 0.186
(.07) (.05) (.03) (.01)

θπ 2.00 2.02 2.00 2.01 2.01
(.12) (.07) (.04) (.01)

Q 0.020 0.017 0.016 0.014
Fraction 0.83 0.85 0.95 1.00

1. For the case in which the hypothesis of policy optimality is false and imposed, the table reports
estimates of the following model: yt = ayt−1−b(rt−πt)+ut, πt = απt−1+βyt+vt, rt = θyyt−1+θππt−1+wt.
The variables are defined as: y - output, π - inflation, r - interest rate. Wy and Wr are the loss function
weights for y and r normalized by the unit weight attached to π.

2. Q is the GMM estimation criterion and Fraction reports the fraction of trials that result in no
outliers.

3. The parenthesis contain standard errors computed across Fraction × 100 trials for each sample
size.
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Table 3. Forward-looking model

True Optimality Restriction (True): Optimality Restriction (True):
(ρ, θ, W ) Value Not Imposed Imposed

sample size sample size
100 250 500 5000 100 250 500 5000

λ 0.15 0.207 0.218 0.181 0.134 0.186 0.162 0.139 0.110
(.25) (.22) (.19) (.11) (.23) (.18) (.15) (.07)

a1 1.10 1.04 1.04 1.07 1.12 1.02 1.05 1.08 1.14
(.26) (.22) (.19) (.11) (.23) (.17) (.14) (.07)

a2 -0.30 -0.279 -0.271 -0.290 -0.303 -0.301 -0.300 -0.316 -0.307
(.12) (.08) (.07) (.04) (.12) (.08) (.07) (.02)

b 0.20 0.184 0.184 0.185 0.209 0.147 0.164 0.168 0.219
(.16) (.12) (.09) (.05) (.14) (.10) (.08) (.04)

α1 0.50 0.433 0.407 0.430 0.507 0.372 0.349 0.378 0.504
(.32) (.24) (.21) (.06) (.32) (.23) (.23) (.06)

α2 0.45 1.67 0.481 0.469 0.449 1.04 0.472 0.468 0.448
(12.0) (.07) (.06) (.02) (4.9) (.07) (.06) (.01)

β 0.15 0.196 0.187 0.180 0.150 0.185 0.191 0.184 0.150
(.11) (.08) (.06) (.02) (.12) (.09) (.07) (.01)

Wy 0.10 – – – – 1.37 0.106 0.587 0.076
(8.1) (.22) (3.6) (.07)

Wr 0.30 – – – – 0.749 0.209 0.228 0.314
(6.3) (.21) (.19) (.06)

θy1 1.10 1.09 1.09 1.09 1.10 1.08 1.09 1.09 1.10
(.13) (.09) (.06) (.02) (.15) (.11) (.07) (.02)

θπ 0.63 0.628 0.610 0.625 0.627 0.646 0.635 0.642 0.627
(.10) (.07) (.04) (.02) (.11) (.07) (.04) (.01)

θr 0.23 0.238 0.237 0.236 0.228 0.246 0.240 0.238 0.227
(.08) (.05) (.04) (.01) (.08) (.04) (.04) (.01)

θy2 -0.20 -0.193 -0.189 -0.196 -0.197 -0.209 -0.197 -0.205 -0.197
(.19) (.11) (.07) (.02) (.18) (.11) (.07) (.02)

Q 0.032 .75e-2 .41e-2 .22e-3 0.110 0.036 0.029 .18e-2
(.04) (.76e-2) (.45e-2) (.27e-3) (.17) (.04) (.05) (.60e-2)

Fraction 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1. For the case in which the hypothesis of policy optimality is true, the table reports estimates of the
following model: yt = λEtyt+1 + a1yt−1 + a2yt−2 − b(rt −Etπt+1) + ut, πt = βyt + α1Etπt+1 + α2πt−1 + vt,
rt = θy1yt−1 + θππt−1 + θrrt−1 + θy2yt−2 + wt. The variables are defined as: y - output, π - inflation, r - in-
terest rate. Wy and Wr are the loss function weights for y and r normalized by the unit weight attached to π.

2. Q is the GMM estimation criterion and Fraction reports the fraction of trials that result in no
outliers.

3. The parenthesis contain standard errors computed across Fraction × 100 trials for each sample
size.
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Table 4. Forward-looking model

True Optimality Restriction (False):
(ρ, θ,W ) Value Imposed

sample size
100 250 500 5000

λ 0.15 0.107 0.092 0.075 0.027
(.18) (.13) (.11) (.03)

a1 1.10 1.09 1.15 1.15 1.20
(.19) (.12) (.11) (.03)

a2 -0.30 -0.354 -0.363 -0.361 -0.367
(.13) (.10) (.06) (.02)

b 0.20 0.181 0.202 0.206 0.239
(.11) (.08) (.06) (.02)

α1 0.50 0.568 0.555 0.559 0.582
(.27) (.13) (.13) (.04)

α2 0.45 0.372 0.356 0.351 0.352
(.10) (.08) (.05) (.01)

β 0.15 0.119 0.108 0.111 0.103
(.06) (.04) (.03) (.01)

Wy 0.10 0.003 0.74e-4 0.78e-4 0.3e-17
(.02) (.74e-3) (.78e-3) (.4e-17)

Wr 0.30 0.001 0.14e-3 0.46e-4 0.3e-17
(.004) (.07e-3) (.46e-2) (.5e-17)

θy1 0.50 0.489 0.479 0.468 0.471
(.11) (.07) (.06) (.01)

θπ 1.50 1.47 1.52 1.53 1.54
(.20) (.09) (.10) (.02)

θr 0.50 0.512 0.509 0.506 0.506
(.06) (.03) (.04) (.01)

θy2 0.00 0.009 -0.82e-3 0.003 -0.006
(.18) (.09) (.10) (.02)

Q 0.224 0.145 0.141 0.113
(.23) (.09) (.11) (.005)

Fraction 1.00 1.00 1.00 1.00

1. For the case in which the hypothesis of policy optimality is false and imposed, the table reports estimates
of the following model: yt = λEtyt+1+a1yt−1+a2yt−2−b(rt−Etπt+1)+ut, πt = βyt+α1Etπt+1+α2πt−1+vt,
rt = θy1yt−1 + θππt−1 + θrrt−1 + θy2yt−2 + wt. The variables are defined as: y - output, π - inflation, r - in-
terest rate. Wy and Wr are the loss function weights for y and r normalized by the unit weight attached to π.

2. Q is the GMM estimation criterion and Fraction reports the fraction of trials that result in no
outliers.

3. The parenthesis contain standard errors computed across Fraction × 100 trials for each sample
size.
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Table 5. Rejection frequency of over-identifying restrictions

Optimal Policy Degrees of Sample Test Size
Restriction Freedom Size .25 .10 .05 .025 .01

True 1

100 60 40 29 17 11
Not 250 51 27 12 6 2

Imposed 500 52 28 17 10 5
5000 32 13 5 2 1

True Imposed 3

100 64 48 40 34 24
250 63 43 39 32 28
500 60 48 42 38 29
5000 41 28 20 18 14

False Imposed 3

100 98 96 96 91 81
250 100 100 100 100 100
500 100 100 100 100 100
5000 100 100 100 100 100

Note: For the forward-looking model, the table reports the frequency of rejection of the over-identifying
moment restrictions as a function of test size, sample size, whether or not the optimality restriction is true,
and whether or not the optimality restriction is imposed during estimation. The values recorded are given
in percentages and are computed across 100 trials for each sample size.

Table 6. Parameters for the representative agent model

Parameter Description Value
b degree of habit formation 0.65
σ inverse of the intertemporal elasticity of substitution 2.00
γ degree of partial price indexation 0.75
β household subjective discount factor 0.99∗

ε fraction of firms unable to reset prices 0.50
χ inverse of the wage elasticity of labor supply 2.00
α capital elasticity of output 0.33∗

η elasticity of demand for intermediate goods 11.0∗

θπ optimal policy rule coefficient on inflation 9.28
θy optimal policy rule coefficient on output 0.28
θr optimal policy rule coefficient on the interest rate 1.63
Wπ implied preference weight on inflation objective 10.9∗∗

Wy implied preference weight on output gap objective 10.6∗∗

δy implied strength of the lag in output gap objective 0.49∗∗

Note: ∗ - indicates that the parameter is fixed at the given value during estimation; ∗∗ - indicates a parameter
value that is implied by the values of the other parameters.
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Table 7. Representative agent model

True Optimality Restriction (True): Optimality Restriction (True):
(ρ, θ, W ) Value Not Imposed Imposed

sample size sample size
100 250 500 5000 100 250 500 5000

b 0.65 0.702 0.670 0.669 0.650 0.739 0.698 0.688 0.650
(.21) (.17) (.11) (.03) (.23) (.18) (.12) (.03)

σ 2.00 3.34 2.75 2.19 2.04 3.32 2.28 1.98 2.02
(4.7) (2.4) (1.4) (.48) (5.9) (1.9) (1.3) (.45)

γ 0.75 0.812 1.08 0.831 0.761 0.740 0.747 0.741 0.763
(.79) (1.3) (.41) (.13) (.41) (.23) (.14) (.01)

ε 0.50 0.517 0.483 0.492 0.500 0.502 0.500 0.500 0.498
(.10) (.09) (.06) (.02) (.04) (.02) (.01) (.002)

χ 2.00 2.29 1.87 1.90 2.01 2.13 1.99 2.04 1.98
(2.0) (1.2) (.80) (.27) (1.1) (.58) (.36) (.12)

Wy 10.6 – – – – 12.4 10.7 10.7 10.5
(7.8) (2.3) (1.6) (.48)

Wπ 10.9 – – – – 11.5 11.1 10.9 10.8
(3.1) (1.9) (.95) (.12)

θy 0.28 0.281 0.278 0.277 0.277 0.276 0.276 0.277 0.277
(.06) (.04) (.03) (.01) (.06) (.04) (.03) (.01)

θπ 9.28 9.28 9.29 9.28 9.28 9.31 9.29 9.28 9.28
(.11) (.07) (.04) (.02) (.15) (.08) (.05) (.02)

θr 1.63 1.63 1.63 1.63 1.63 1.64 1.64 1.63 1.63
(.02) (.02) (.01) (.003) (.03) (.02) (.01) (.003)

Q 0.013 0.004 0.002 .14e-3 0.083 0.036 0.015 .78e-3
(.01) (.006) (.003) (.17e-3) (.11) (.06) (.04) (.59e-3)

Fraction 0.88 0.99 1.00 1.00 0.88 0.99 1.00 1.00

1. For the case in which the hypothesis of policy optimality is true, the table reports estimates of the
representative agent model described in section 3.3. The parameters have the following interpretation: b
- habit persistence, σ - inverse of the intertemporal elasticity of substitution, γ - partial indexation, ε -
fraction of firms unable to adjust prices, χ - inverse of the wage elasticity of labor supply. {θy, θπ, θr} are
the coefficients of the policy rule and {Wy,Wπ} are the loss function weights.

2. Q is the GMM estimation criterion and Fraction reports the fraction of trials that result in no
outliers.

3. The parenthesis contain standard errors computed across Fraction × 100 trials for each sample
size.
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Table 8. Representative agent model

True Optimality Restriction (False):
(ρ, θ, W ) Value Imposed

sample size
100 250 500 5000

b 0.65 0.749 0.739 0.786 0.768
(.23) (.21) (.17) (.11)

σ 2.00 2.77 3.14 1.34 0.717
(4.4) (5.6) (2.2) (.56)

γ 0.75 0.937 0.987 0.966 0.995
(.51) (.41) (.32) (.05)

ε 0.50 0.396 0.368 0.357 0.342
(.12) (.08) (.07) (.01)

χ 2.00 1.12 1.08 1.20 1.28
(.66) (.48) (.39) (.17)

Wy 10.6 10.2 10.6 7.83 6.82
(7.2) (10.0) (3.7) (.61)

Wπ 10.9 8.49 5.98 5.31 4.31
(9.4) (4.8) (3.7) (.18)

θy 0.50 0.484 0.494 0.495 0.499
(.08) (.05) (.04) (.01)

θπ 1.50 1.53 1.52 1.52 1.52
(.05) (.03) (.02) (.01)

θr 0.50 0.499 0.502 0.499 0.496
(.03) (.02) (.01) (.01)

Q 0.279 0.260 0.259 0.244
(.14) (.09) (.07) (.03)

Fraction 0.91 0.99 1.00 1.00

1. For the case in which the hypothesis of policy optimality is false and imposed, the table reports
estimates of the representative agent model described in section 3.3. The parameters have the following
interpretation: b - habit persistence, σ - inverse of the intertemporal elasticity of substitution, γ - partial
indexation, ε - fraction of firms unable to adjust prices, χ - inverse of the wage elasticity of labor supply.
{θy, θπ, θr} are the coefficients of the policy rule and {Wy,Wπ} are the loss function weights.

2. Q is the GMM estimation criterion and Fraction reports the fraction of trials that result in no
outliers.

3. The parenthesis contain standard errors computed across Fraction × 100 trials for each sample
size.
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Table 9. Rejection frequency of over-identifying restrictions

Optimal Policy Degrees of Sample Test Size
Restriction Freedom Size .25 .10 .05 .025 .01

True 1

100 60 33 26 18 15
Not 250 23 10 6 5 2

Imposed 500 27 12 6 4 2
5000 16 4 1 0 0

True Imposed 4

100 36 25 19 16 16
250 25 14 12 11 9
500 28 9 6 4 4
5000 19 11 6 3 2

False Imposed 4

100 100 99 98 92 88
250 100 100 100 100 100
500 100 100 100 100 100
5000 100 100 100 100 100

Note: For the representative agent model, the table reports the frequency of rejection of the over-identifying
moment restrictions as a function of test size, sample size, whether or not the optimality restriction is true,
and whether or not the optimality restriction is imposed during estimation. The values recorded are given
in percentages and are computed across Fraction × 100 trials for each sample size.

Table 10. Assessment of model fit (1979:III to 2001:IV)

Backward Looking Forward Looking Representative Agent
Policy Restrictions: Policy Restrictions: Policy Restrictions:

Not Imposed Imposed Not Imposed Imposed Not Imposed Imposed
Q 4.3e-19 0.016 0.018 0.094 0.033 1.108

Q× T – – 1.55 8.27 2.94 97.5
p-value – – 0.15 0.02 0.09 0.00
L 1219.1 1215.4 1274.7 1254.7 1266.4 1083.9

Note: Q is the minimized GMM estimation criterion. Q × T is the Hansen (1982) chi-squared test statistic
for the model’s over-identifying restrictions. L = −T

2 ln(|Φ|) corresponds to pseudo log likelihood and is
obtained from the residual-error covariance matrix Φ.
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Table 11. Structural parameter estimates (1979:III to 2001:IV)

A. Forward-Looking Model
Optimal Policy Restrictions:

Parameter Not Imposed Imposed
λ 0.42 0.08

(12.4) (5.4)
a1 0.77 1.18

(8.9) (.42)
a2 -0.20 -0.30

(3.4) (.15)
b 0.01 0.01

(19.7) (3.4)
α1 0.00 0.02

(2.5e4) (21.2)
α2 0.67 0.71

(.16) (.36)
β 0.04 0.02

(.74) (1.2)
B. Representative Agent Model

Optimal Policy Restrictions:
Parameter Not Imposed Imposed

b 0.87 0.999
(.80) (4.9e3)

σ 4.43 0.47e-4
(1.6) (5.0e3)

γ 0.76 1.00
(.65) (1.1e4)

ε 0.98 0.82
(4.2) (.32)

χ 0.02 0.9e-6
(1.4e3) (4.9e3)

Note: The table reports structural parameter estimates of the forward-looking and representative agent
models described in sections 3.2 and 3.3. The numbers in parenthesis are estimated standard errors.
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Table 12. Policy coefficient estimates (1979:III to 2001:IV)

A. Forward-Looking Model
Optimal Policy Restrictions:

Not Imposed Imposed
Coefficient Estimate Derivative Estimate Derivative
θy1 0.21 -34.4 0.59 -0.9e-3

(.18) (.18)
θπ 0.28 -9.8 0.29 -0.2e-3

(.11) (.09)
θr 0.78 6.3 0.87 -0.5e-4

(.09) (.08)
θy2 -0.26 -32.7 -0.13 -0.8e-3

(.17) (.17)
Wy – – 0.00 –

(2.7e5)
Wr – – 0.00 –

(2.5e5)
B. Representative Agent Model

Optimal Policy Restrictions:
Not Imposed Imposed

Coefficient Estimate Derivative Estimate Derivative
θy -0.05 -4.5e3 -1.48 0.05

(.03) (.96)
θπ 0.31 -7.9e2 6.69 -0.08

(.11) (4.5)
θr 0.80 -17.3 -0.32e-3 -0.28

(.08) (.56)
Wy 123.1 – 20.6 –
Wπ 1.3e4 – 139.0 –

Note: The table reports policy-rule coefficient estimates and loss function weights for the forward-looking
and representative agent models described in sections 3.2 and 3.3. The numbers in parenthesis are estimated
standard errors.
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Table 13. Comparison of GMM and FIML

True Optimality Restriction (True):
(ρ, θ,W ) Value FIML GMM

sample size sample size
100 1000 100 1000

λ 0.15 0.155 0.174 0.181 0.114
(.11) (.08) (.23) (.11)

a1 1.10 0.957 0.977 1.04 1.12
(.16) (.11) (.24) (.11)

a2 -0.30 -0.242 -0.273 -0.307 -0.315
(.09) (.05) (.12) (.04)

b 0.20 0.125 0.116 0.152 0.197
(.08) (.07) (.15) (.07)

α1 0.50 0.453 0.461 0.372 0.448
(.12) (.06) (.32) (.17)

α2 0.45 0.412 0.409 0.749 0.454
(.07) (.05) (2.1) (.03)

β 0.15 0.160 0.167 0.187 0.164
(.08) (.04) (.13) (.04)

Wy 0.10 0.129 0.110 12.4 0.088
(.18) (.07) (101) (.11)

Wr 0.30 0.127 0.135 0.609 0.283
(.17) (.12) (4.9) (.15)

θy1 1.10 1.06 1.07 1.08 1.10
(.15) (.07) (.14) (.04)

θπ 0.63 0.682 0.676 0.649 0.633
(.11) (.06) (.11) (.03)

θr 0.23 0.239 0.242 0.244 0.233
(.06) (.03) (.08) (.02)

θy2 -0.20 -0.189 -0.195 -0.209 -0.206
(.17) (.08) (.18) (.05)

Note: For the case in which the hypothesis of policy optimality is true and imposed, the table reports
estimates of the structural parameters, loss function weights, and policy-rule coefficients for the forward-
looking model described in section 3.2. The estimates in the left panel are obtained from a nested approach
that uses full information maximum likelihood (FIML). The estimates in the right panel are obtained using
GMM. The numbers in parenthesis are estimated standard errors.
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Table 14. Comparison of GMM and FIML

True Optimality Restriction (False):
(ρ, θ, W ) Value FIML GMM

sample size sample size
100 1000 100 1000

λ 0.15 0.151 0.144 0.107 0.045
(.08) (.08) (.18) (.05)

a1 1.10 0.943 0.929 1.09 1.18
(.10) (.10) (.19) (.06)

a2 -0.30 -0.196 -0.187 -0.354 -0.372
(.08) (.10) (.13) (.03)

b 0.20 0.177 0.183 0.181 0.222
(.05) (.05) (.11) (.03)

α1 0.50 0.614 0.629 0.568 0.562
(.07) (.04) (.27) (.08)

α2 0.45 0.461 0.445 0.372 0.347
(.05) (.05) (.10) (.04)

β 0.15 0.057 0.070 0.119 0.108
(.02) (.03) (.06) (.02)

Wy 0.10 0.008 0.007 0.003 0.7e-15
(.3e-2) (.3e-2) (.02) (.5e-14)

Wr 0.30 0.026 0.028 0.001 0.55e-4
(.9e-2) (.03) (.4e-2) (.4e-3)

θy1 0.50 0.262 0.318 0.489 0.479
(.70) (.52) (.11) (.03)

θπ 1.50 -0.144 -0.299 1.47 1.53
(.92) (.70) (.20) (.08)

θr 0.50 0.639 0.649 0.512 0.510
(.30) (.25) (.06) (.02)

θy2 0.00 -0.259 -0.312 0.009 -0.010
(.64) (.53) (.18) (.06)

Note: For the case in which the hypothesis of policy optimality is false and imposed, the table reports
estimates of the structural parameters, loss function weights, and policy-rule coefficients for the forward-
looking model described in section 3.2. The estimates in the left panel are obtained from a nested approach
that uses full information maximum likelihood (FIML). The estimates in the right panel are obtained using
GMM. The numbers in parenthesis are estimated standard errors.
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Table 15. Two step estimation of the forward-looking model

True Two Step Procedure Unified Estimation
(ρ, θ, W ) Value sample size sample size

100 1000 10000 100 1000 10000
λ 0.15 0.207 0.157 0.131 0.181 0.114 0.112

(.25) (.17) (.09) (.23) (.11) (.05)
a1 1.10 1.04 1.09 1.12 1.04 1.12 1.13

(.26) (.17) (.09) (.24) (.11) (.06)
a2 -0.30 -0.279 -0.299 -0.304 -0.307 -0.315 -0.304

(.12) (.06) (.03) (.12) (.04) (.01)
b 0.20 0.184 0.198 0.209 0.152 0.197 0.217

(.16) (.08) (.04) (.15) (.07) (.03)
α1 0.50 0.433 0.472 0.506 0.372 0.448 0.505

(.32) (.16) (.04) (.32) (.17) (.01)
α2 0.45 1.67 0.459 0.449 0.749 0.454 0.450

(12.0) (.04) (.01) (2.1) (.03) (.01)
β 0.15 0.196 0.164 0.149 0.187 0.164 0.149

(.11) (.05) (.01) (.13) (.04) (.01)
Wy 0.10 0.679 0.120 0.081 12.4 0.088 0.073

(2.7) (.25) (.07) (101) (.11) (.06)
Wr 0.30 5.2e20 0.222 0.276 0.609 0.283 0.321

(5.2e21) (.14) (.07) (4.9) (.15) (.04)
θy1 1.10 1.09 1.10 1.10 1.08 1.10 1.10

(.13) (.04) (.01) (.14) (.04) (.01)
θπ 0.63 0.628 0.621 0.628 0.649 0.633 0.628

(.10) (.03) (.01) (.11) (.03) (.01)
θr 0.23 0.238 0.232 0.228 0.244 0.233 0.226

(.08) (.03) (.01) (.08) (.02) (.01)
θy2 -0.20 -0.193 -0.199 -0.198 -0.209 -0.206 -0.196

(.19) (.05) (.01) (.18) (.05) (.02)

Note: The table reports estimates of the structural parameters, policy-rule coefficients, and loss function
weights for the forward-looking model described in section 3.2. The figures in the left panel are obtained
from a two step procedure whereby the normal equations alone are used to estimate structural parameters and
policy-rule coefficients. The policymaker’s first-order conditions are then used in a second step to estimate
the loss function weights holding fixed the first step estimates. The figures in the right panel are obtained
from the unified approach described in section 2. The numbers in parenthesis are standard errors.
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Table 16. Two step estimation of the forward-looking model

Partial Two Step Procedure Unified Estimation
Derivative sample size sample size

100 1000 10000 100 1000 10000
θy1 1.3e24 33.7 0.13e-4 -0.46e-3 -0.37e-5 0.21e-5

(1.3e25) (216) (.6e-3) (.3e-2) (.2e-3) (.6e-5)
θπ 1.9e24 -63.6 -0.8e-3 0.21e-3 -0.28e-4 0.33e-6

(1.9e25) (408) (.8e-3) (.6e-2) (.1e-3) (.3e-5)
θr 3.3e25 -176 -0.13e-2 -0.53e-3 -0.58e-4 -0.35e-5

(3.3e26) (1.1e4) (.2e-2) (.2e-2) (.1e-3) (.9e-5)
θy2 6.1e24 238 -0.17e-3 -0.35e-3 0.68e-5 0.16e-5

(6.1e25) (1.6e4) (.8e-3) (.3e-2) (.2e-3) (.6e-5)

Note: The table reports estimates of the partial derivatives of loss with respect to the policy-rule coefficients
of the forward-looking model described in section 3.2. The derivatives in the left panel are computed on the
basis of a two step procedure. The derivatives in the right panel are computed on the basis of the unified
approach to estimation. The numbers in parenthesis are standard errors.
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Table 17. Estimation with alternative starting values

True Alternative Starting Values Original Starting Values
(ρ, θ, W ) Value sample size sample size

100 500 5000 100 500 5000
λ 0.15 0.175 0.142 0.112 0.186 0.139 0.110

(.23) (.15) (.07) (.23) (.15) (.07)
a1 1.10 1.05 1.08 1.14 1.02 1.08 1.14

(.26) (.15) (.07) (.23) (.14) (.07)
a2 -0.30 -0.323 -0.309 -0.306 -0.301 -0.316 -0.307

(.14) (.06) (.01) (.12) (.07) (.02)
b 0.20 0.147 0.179 0.222 0.147 0.168 0.219

(.13) (.09) (.04) (.14) (.08) (.04)
α1 0.50 0.368 0.398 0.507 0.372 0.378 0.504

(.31) (.22) (.02) (.32) (.23) (.06)
α2 0.45 0.469 0.466 0.449 1.04 0.468 0.448

(.10) (.05) (.01) (4.9) (.06) (.01)
β 0.15 0.197 0.181 0.149 0.185 0.184 0.150

(.12) (.06) (.01) (.12) (.07) (.01)
Wy 0.10 2.48 0.526 0.071 1.37 0.587 0.076

(18.3) (3.6) (.07) (8.1) (3.6) (.07)
Wr 0.30 0.466 0.257 0.326 0.749 0.228 0.314

(3.2) (.19) (.06) (6.3) (.19) (.06)
θy1 1.10 1.09 1.09 1.10 1.08 1.09 1.10

(.14) (.06) (.01) (.15) (.07) (.02)
θπ 0.63 0.654 0.639 0.627 0.646 0.642 0.627

(.11) (.04) (.01) (.11) (.04) (.01)
θr 0.23 0.243 0.234 0.226 0.246 0.238 0.227

(.08) (.03) (.01) (.08) (.04) (.01)
θy2 -0.20 -0.212 -0.201 -0.197 -0.209 -0.205 -0.197

(.18) (.07) (.02) (.18) (.07) (.02)
Q 0.104 0.021 0.97e-3 0.110 0.029 0.18e-2

(.18) (.04) (.1e-2) (.17) (.05) (.60e-2)

Note: The table reports estimates of the structural parameters, loss function weights, and policy-rule coeffi-
cients for the forward-looking model described in section 3.2. The estimates in the right panel are obtained
conditional on the original parameter starting values. The estimates in the left panel are obtained conditional
on random parameter starting values either 10 percent below or 10 percent above the original values. The
numbers in parenthesis are standard errors.
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