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Abstract

This paper presents a Generalized Method of Moments algorithm for estimating the struc-
tural parameters of a macroeconomic model subject to the restriction that the coefficients of the
monetary policy rule minimize the central bank’s expected loss function. The algorithm combines
least-squares normal equations with moment restrictions derived from the first-order necessary
conditions of the auxiliary optimization. We assess the performance of the algorithm with Monte
Carlo simulations using three increasingly complex models. We find that imposing the optimizing
restrictions when they are true improves estimation accuracy and that imposing those restrictions
when they are false biases estimates of some of the structural parameters but not of the policy-rule
coefficients.

JEL Classification: C32; C61; E31; E32; E52; E61

Keywords: GMM; optimal monetary policy; simple rules; policy objectives

1. Introduction

Two of the most influential developments in the field of monetary economics have been

the rise of interest rate rules as a means of capturing the systematic component of policy

(e.g., Taylor (1993) and Clarida, Gaĺı, and Gertler (2000)) as well as the advancement of

structural New Keynesian models usable for policy analysis (e.g., Fuhrer and Moore (1995)

and Rotemberg and Woodford (1997)). A recurring theme emerging from this literature is

that the historical conduct of monetary policy in the U.S., as reflected by the estimated

coefficients of an interest rate rule, is very different from the behavior implied by optimal
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rules derived in a framework that couples an empirical model of the economy with an explicit

loss function for the central bank. Rudebusch (2001) notes that optimized rules normally

call for an aggressive response to departures of inflation and output from target. Estimated

rules, on the other hand, indicate not only a more conservative reaction to both variables,

but also a tendency to avoid volatile swings in the policy instrument, a phenomenon known

as interest rate smoothing.

Dennis (2005) argues that the reason for the apparent disconnect between optimal and

historical policies is that counterfactual policy analysis is often carried out using a param-

eterized loss function that is inconsistent with outcomes observed in U.S. data. Attempts

to reconcile estimated rules with ones that solve an optimal policy exercise have produced

a burgeoning literature where the weights in the central bank’s objective function are cho-

sen with an eye to the data. Favero and Rovelli (2003), Ozlale (2003), and Dennis (2005)

estimate backward-looking models of aggregate demand and supply subject to an auxiliary

condition that the policy rule minimizes a quadratic loss function. Imposing an optimality

restriction in the course of estimation enables them to obtain joint estimates of the structural

parameters and the policy weights that identify central bank preferences. The result is an

empirical model that is jointly consistent with the historical record and policy optimality.

Salemi (2006) and Dennis (2004) demonstrate how to generalize the estimation procedure

to incorporate forward-looking models embodying rational expectations. Although there are

obvious advantages to modeling policy decisions at a structural level, this simultaneous

approach to estimation comes with a cost. The task of nesting the optimal-policy algorithm

of the central bank within the estimation algorithm of the researcher is computationally

burdensome. One commonly-used strategy involves estimating the parameters of the model

(including the loss function weights) by quasi-maximum likelihood, in which case the optimal

policy-rule coefficients are found each time a sample likelihood value is recorded. This “brute

force” approach is computationally intensive because the great majority of estimation time
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involves identifying optimal policies for parameter values that do not fit the data.

Since Hansen (1982) refocused attention on method of moments estimation, the Gener-

alized Method of Moments (GMM) has become an important component of the econometri-

cian’s toolkit. In this paper, we develop a new GMM algorithm for estimating the structural

parameters of three increasingly complex New Keynesian-style models while maintaining

the strict assumption that policy-rule coefficients minimize the central bank’s expected loss

function. The algorithm combines the least squares normal equations implied by the model’s

reduced form with the first-order necessary conditions characterizing the policymaker’s op-

timal choice of coefficients. The result is a parsimonious set of orthogonality conditions that

form the basis for estimation using GMM.

The empirical strategy adopted here is computationally more efficient than the brute force

approach because it circumvents the need to perform an optimal control exercise for each

set of parameters considered in the course of estimation. Instead, the algorithm searches

freely over values of the structural parameters, the loss function weights, and the policy-

rule coefficients for those that satisfy a collection of moment conditions, a subset of which

correspond to the first order conditions of the policymaker’s control problem. Although

the algorithm bypasses an explicit optimal control exercise, it is still an example of inverse

control because it permits the researcher to obtain estimates of monetary policy objectives

by observing the actions embodied in the policy rule.1

Our estimation algorithm is perhaps most similar to the method expounded by Favero

and Rovelli (2003). They use GMM to estimate an aggregate demand and supply model

featuring an interest-rate targeting criterion derived from minimization of the central bank’s

loss function. Our contribution departs from their’s along two critical dimensions. First, their

algorithm can only be applied to backward-looking models of the economy. In contrast, our

1Refer to Salemi (2006) for a more detailed discussion of inverse control theory and its applications in
monetary policy analysis.
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approach generalizes to a broader class of models that include backward and forward-looking

structures. Second, to obtain an estimable set of orthogonality conditions, the authors

assume that central bank preferences are defined over an intertemporal loss function with

an arbitrary finite horizon. The estimation algorithm discussed in this paper, on the other

hand, can be used to identify the policy weights of a more conventional objective function

defined over an infinite horizon.

By means of Monte Carlo simulations, we assess the performance of GMM in two cases.

In the first case, the true policy coefficients are optimal for a given set of loss function weights.

In the second, the true coefficients are not optimal for any policy weights. The second case

is important because it demonstrates what can happen if one conditions estimation on the

erroneous assumption that observed policy actions are the outcome of optimal behavior.

We find that when the hypothesis of policy optimality is true, GMM consistently returns

unbiased estimates of all parameters, with each converging to its true value as sample size

increases. We also find that imposing policy optimality sharpens estimates of several struc-

tural parameters. In contrast, imposing optimality when it is false yields biased estimates

of some parameters but does not lead to bias of the policy-rule coefficients.

Finally, we demonstrate the breadth of our GMM methodology with an application to

actual U.S. data. Such an exercise allows us to clarify the practical significance of including

optimal policy restrictions by comparing outcomes in two cases. In the first case, policy-rule

coefficients are unrestricted, and in the second, they are constrained to satisfy the first order

conditions for a loss-minimizing policy. For each model considered, we find that imposing

optimality conditions weakens empirical performance according to standard measures of

model fit. We also find that policy optimality changes the estimates of some key structural

parameters and policy-rule coefficients in a meaningful way.

The remainder of the paper is organized as follows. Section 2 describes the econometric

problem and demonstrates how to write the policymaker’s first order conditions as moment
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restrictions. Section 3 documents Monte Carlo results obtained after applying our GMM

algorithm to three different models of the New Keynesian variety. Section 4 reports estimates

for each model when taken to U.S. data. Section 5 compares our GMM strategy with two

alternative procedures commonly used in the literature, namely, full information maximum

likelihood and a two-step estimation approach. Section 6 concludes.

2. The econometric problem

We consider a macroeconomic model characterized by a system of dynamic, discrete-time

rational expectations equations of the form:

EtF (Xt−1, Xt, Xt+1, . . . , Xt+j, εt; ρ, θ) = 0 (1)

where Xt and εt are (nx×1) and (nε×1) vectors of endogenous variables and serially uncorre-

lated exogenous shocks, respectively. Let Et denote the mathematical expectations operator

conditional on information available through date t, and let j > 1 be the maximum number

of leads necessary to describe the nf equations stacked in the vector F . The secondary

arguments, ρ and θ, are vectors whose elements correspond to the underlying structural

parameters and the coefficients of the monetary policy rule, respectively. Given initial con-

ditions and a sequence of exogenous shocks {εt}∞t=1, equation (1) determines {Xt}∞t=1.

One equation in F describes the behavior of the central bank and is given by the following

rule for setting the nominal interest rate:

rt = P (Xt−1, wt; θ) (2)

The elements of θ govern how the policymaker adjusts the interest rate to changes in economic

events as represented by Xt−1, and wt is a white-noise disturbance summarizing all exogenous

variation in the policy instrument. Throughout the paper we maintain the assumption that
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the central bank commits to a simple, fixed-parameter rule and chooses θ optimally to achieve

an explicit objective that we describe later.

We justify the decision to represent monetary policy using a simple instrument rule on

numerous grounds. First, Levin, Wieland, and Williams (1999) argue that simple policy

rules incorporating feedback from a small set of variables perform well across a variety of

macroeconomic models featuring rational expectations. The implication is that simple rules

are more robust to uncertainty regarding the true structure of the economy. Second, as

noted by McCallum (1999), simple rules of the form (2) are operational in the sense that

they identify the policy instrument rt as a variable that the central bank can actually control,

and by way of feedback from Xt−1, require only information about the state of the economy

that is readily observable at the beginning of period t. Finally, by construction, simple

rules have the desirable property that they can be communicated to the public and verified

without much difficulty, enhancing visibility of central bank actions.

For the models that we consider, the rational expectations solution to (1) can be expressed

as a first-order autoregression

Xt = GXt−1 + Hεt (3)

where G and H are (nx × nx) and (nx × nε) matrices of reduced-form parameters whose

elements are nonlinear functions of ρ and θ. For the purpose of estimation, we denote the

residual term ϕt ≡ Hεt as the (nx× 1) vector of reduced-form errors with covariance matrix

Φ. Because ϕt is a vector containing unique linear combinations of the elements of εt, it is

serially uncorrelated.

In the spirit of Svensson (1999) and Clarida, Gaĺı, and Gertler (1999), we assume that

the stabilization objectives of the central bank are summarized by the following quadratic

loss function:

Λ = Et

∞∑
j=0

δj (Xt+j −X∗)′ W (Xt+j −X∗) (4)
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where X∗ is a vector of fixed target values for Xt+j and δ ∈ (0, 1) is a discount factor. W

is a (nx × nx) matrix of loss function coefficients whose elements contain the nonnegative

policy weights that measure the relative importance of each objective. Optimal policy means

searching over the elements of θ for those that minimize Λ and guarantee a unique rational

expectations equilibrium to (1). The resulting policy is not the unconstrained optimal com-

mitment policy in a global sense, but rather the best policy that resides within a family of

simple instrument rules of the form (2).

Because we are interested in retrieving the loss function weights implied by the estimate

of θ, we must take a stand on how policy is conducted in our sample, recognizing that the

nature of policy determines the true data generating process. There are generally three

classes of policies that have received considerable attention in the literature. The first is

a once-and-for-all commitment policy in which the central bank chooses a state-contingent

path {Xt}∞t=0 subject to the constraints implied by the structural model. Svensson and

Woodford (2005) show that such a policy can be represented by an explicit instrument rule

that responds to not only the current state vector, but the entire history of state vectors

dating back to the announcement of the policy. The second class, optimal discretion, requires

the central bank to choose the interest rate by reoptimizing its loss function every period

taking as given private sector expectations of future variables (e.g., Jensen (2002), Walsh

(2003), and Vestin (2006)). The idea is that past policy decisions in no way constrain current

or future policy decisions like they do under commitment. The third class of policies can

be broadly defined as commitment to a simple, fixed-parameter instrument rule along the

lines of Taylor (1993). While retaining many of the expectations-forming benefits of optimal

commitment, simple interest rate rules involve feedback from only a small set of observable

variables (e.g., McCallum and Nelson (1999b) and Schmitt-Grohé and Uribe (2007)).

In this paper, we assume that actual policy is conducted according to a simple instrument

rule of the form (2). That is, given the loss function (4), the true data generating process is
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determined by commitment to a simply policy rule whose coefficients are chosen to minimize

expected loss. If instead we assumed that policy is the outcome of optimal commitment

(e.g., Ilbas (2007)) or optimal discretion (e.g., Dennis (2004) and Söderlind, Söderström,

and Vredin (2005)), then we could still preserve the GMM framework by augmenting the

system with appropriate first order conditions from the Lagrangian as shown by Söderlind

(1999). Taking that step here, however, would amount to imposing false restrictions on the

model given our assumption about the nature of policy. Generalizing the GMM algorithm to

the cases of optimal commitment and discretion would certainly be desirable, but is properly

the business of another paper.

Following Salemi (2006), we can rewrite the policymaker’s loss function as

Λ = tr
(
W × (1− δ)−1

[
Φ + δGΦG′ + δ2G2Φ(G2)′ + . . .

])
= tr (W ×M) (5)

where M is the discounted sum of forecast error variances in Xt+j when policy is set at date

t. The following closed form solution for M can be obtained by applying the vec operator:

vec (M) = (1− δ)−1 [I − δG⊗G]−1 vec (Φ) (6)

The optimal value of θ satisfies the first-order necessary conditions of the central bank’s loss

minimization problem given by

∂Λ

∂θk

= vec (W )′ × ∂vec(M)

∂θk

= 0 (7)

where θk corresponds to the kth element of θ. Using (6) and recognizing that G depends on

the policy-rule coefficients, we can obtain the following analytic expression for the partial
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derivative on the right-hand-side of (7):

∂vec(M)

∂θk

=

(
δ

1− δ

)
[I − δG⊗G]−1

(
∂(G⊗G)

∂θk

)
[I − δG⊗G]−1 × vec(Φ) (8)

= Dk(ρ, θ)× vec(Φ)

where terms involving the Kronecker product of G are combined in the (n2
x×n2

x) matrix Dk

for notational convenience. In the construction of (8), we have assumed that Φ is unaffected

by the choice of θ. One of the models discussed below, however, requires that we relax this

assumption and modify the partial derivative expression accordingly.

2.1. Imposing optimality in the course of estimation

Given a sample {Xt}T
t=1, the econometrician seeks estimates of the structural parameters

subject to the auxiliary condition that the elements of θ are those that minimize the central

bank’s expected loss function (4). Salemi (2006) uses a “brute force” strategy to impose the

auxiliary restriction. For given initial values of ρ and W , the brute force approach identifies

the value of θ that minimizes expected loss, solves the model for its reduced form (3), and

then computes sample log likelihood. The algorithm searches over values of ρ, W , and all

unique elements of Φ that increase sample likelihood and stops when no higher value can

be found. Estimation time can be long because the algorithm calculates the optimal policy

each time log likelihood is recorded, that is, for many parameter values very different from

those that fit the data.

The alternative approach developed here exploits the set of orthogonality conditions

provided by the central bank’s optimization problem to estimate the model using GMM.

Specifically, the algorithm combines the least squares normal equations given by E(ϕtX
′
t−1) =

0 with a collection of theoretical moments obtained by taking the unconditional expectation

of (7). Denote ϕ̂t the sample estimate of ϕt and let Φ̂ = 1/T
∑T

t=1 ϕ̂tϕ̂
′
t be the sample average
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of the matrix of time t residual covariances. Using Φ̂ as an estimate of Φ, one can construct

the sample analog of (7) as

∂Λ

∂θk

= vec(W )′ ×Dk(ρ, θ)× vec(Φ̂) = 0 (9)

for all k in θ. Equation (9) indicates that if the policy rule is indeed optimal, a certain linear

combination of the elements of Φ̂ vanishes.

Define g(ρ, θ, W ) to be the (m× 1) vector that contains the sample counterparts of the

least-squares normal equations as well as the k first order conditions satisfied by an optimal

policy rule. The typical element of g should be zero provided the model is true. The GMM

estimation criterion is Q = g(ρ, θ, W )′S−1g(ρ, θ, W ), where S−1 is the optimal weighting

matrix described in Hamilton (1994, pp. 412-13). The algorithm searches freely over values

of ρ, θ, and W for those that reduce Q and stops when no lower value can be found.

Although the empirical strategy adopted here increases the estimated parameter space by

the dimension of θ, it can reduce computation time relative to the brute force approach by

avoiding the calculation of an optimal policy for each set of parameters evaluated.

3. GMM estimation of New Keynesian models

In what follows, we test the performance of the GMM algorithm formalized in section

2. By means of Monte Carlo simulations, we estimate the structural parameters of three

different models subject to the condition that the policy equation minimizes a well-defined

loss function. All three models are New Keynesian in spirit in that policy affects aggregate

demand through a conventional interest rate channel and inflation through a Phillips curve

specification. Each model determines the equilibrium relationship among the output gap y,

the inflation rate π, and the short-maturity nominal interest rate r controlled by the central

bank. While sharing some broad characteristics, the three models differ substantially in

several important ways, namely, in the complexity of the relationship between structural
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and reduced-form parameters, in how the partial derivatives of expected loss are computed,

and in the number of over-identifying restrictions they imply.

3.1. A backward-looking model

We begin by applying GMM to a purely backward-looking model. Although it can be

criticized for providing no explicit role for expectations, it is instructive to start with a simple

framework for a number of reasons. First, analytic expressions for the elements of ∂(G⊗G)
∂θk

are

easily obtained in the context of a backward-looking model. Making use of them to evaluate

the sample moment conditions will likely render estimation more accurate. Second, the

loss-minimizing values of θ can be verified independently by iterating on the matrix Ricatti

equations. Third, the chosen backward-looking structure implies exact identification of the

model parameters, whereas estimation of more elaborate forward-looking models entails

over-identification.

The model consists of three equations that jointly govern the dynamics of the output

gap, inflation, and the nominal interest rate. It is similar to the models used by Svensson

(1997) and Ball (1999) to evaluate alternative targeting policies.

yt = ayt−1 − b(rt − πt) + ut (10)

πt = απt−1 + βyt + vt (11)

rt = θyyt−1 + θππt−1 + wt (12)

Equation (10) is an IS schedule establishing output as a function of its own lag, a pseudo-

real interest rate, rt − πt, and a white-noise demand shock ut. All parameters are assumed

positive. Equation (11) is a Phillips curve that illustrates the dependence of inflation on past

inflation, a serially uncorrelated supply shock vt, and a measure of excess demand which is

assumed proportional to the output gap.
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The central bank directs policy towards stabilizing a collection of target variables sum-

marized by the following quadratic loss function:

Λ = Et

∞∑
j=0

δj
[
π2

t+j + Wyy
2
t+j + Wrr

2
t+j

]
(13)

A sequence {rt+j}∞j=o corresponding to a unique combination of θy and θπ is chosen so as

to minimize (13) subject to (10) - (11). The three arguments contained in the loss function

indicate that the monetary authority penalizes departures of inflation, the output gap, and

the nominal interest rate from their respective target levels.2 The relative size of the penalty

attached to each is determined by the nonnegative policy weights {1,Wy,Wr}.
Loss functions of the form (13) are common in the monetary policy literature. Svensson

(1999) argues that the principle stabilization objectives of an inflation targeting central

bank can be represented by a weighted sum of the variances of target-adjusted inflation and

the output gap. Under certain conditions, Woodford (2003) demonstrates that such a loss

function can also be obtained as a quadratic Taylor series expansion of the expected utility

of the representative consumer in an optimization-based model of the type examined later

in this paper. Perhaps less common is the inclusion of an explicit interest rate stabilization

objective. However, Woodford (2003) shows that a concern for nominal interest rate volatility

can be justified on the grounds that it prevents frequent violations of the zero lower bound.

We should note that from an econometric standpoint, penalizing squared deviations of

inflation and the nominal interest rate from constant trends may be problematic in practice

considering the structural breaks that have likely occurred in the historical series from shifts

in monetary policy regime. Dealing with structural breaks, however, is beyond the scope

of this paper. As a result, we assume that the sample covers a period over which one can

2Because π and r are expressed as percent deviations from trend and y corresponds to the output gap, it
is reasonable to assume that the appropriate target values for each of these variables is zero.
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justify a stable policy regime.3 In addition, a loss function penalizing first differences in the

nominal interest rate (e.g., Rudebusch and Svensson (1999)) may capture the smoothing

behavior of the central bank better than the present version. Because our main objective is

to demonstrate the consistency of GMM, we leave such tasks for future work.

The parameter values chosen for the backward-looking model have a straightforward in-

terpretation and are listed along with the estimation results in Table 1. To parameterize the

reduced-form error covariance matrix Φ, we use estimates reported in Salemi (2006) which

indicate that interest rate shocks are positively correlated with innovations to aggregate de-

mand and supply. Concerning the loss function parameters, we assume that the central bank

places a larger emphasis on stabilizing inflation than on stabilizing output while applying an

intermediate weight on attaining interest rate stability. A policy rule of the form (12) with

θy = 0.306 and θπ = 0.102 minimizes expected loss.

In assessing the performance of the estimation algorithm, a key issue is determining

whether or not GMM can successfully recover the optimal values of the policy-rule coefficients

together with the loss function weights. Figure 1 provides some evidence on this matter,

illustrating how the partial derivatives of Λ with respect to θy and θπ vary with departures of

θy from its optimal value.4 For θy = 0.306, the partial derivative functions return values on

the order of 10−17. As θy moves away from it loss-minimizing value, the partial derivatives

increase rapidly to values ranging between 10−4 and 10−2. Thus, an estimation criterion

that includes first order conditions from the policymaker’s control problem should be able

to distinguish between optimal and suboptimal values of θy and θπ.

Before proceeding further, we address an important econometric issue concerning the

specific form of the moment conditions employed during estimation. It is well known that

the properties of the ordinary least squares estimator can be obtained as a special case of

3See Salemi (2006) for a discussion on how to deal with structural breaks in the context of an inverse
control exercise.

4The graph corresponding to variations in θπ conveys similar information and is not displayed.
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GMM. As a result, least-squares normal equations requiring zero covariance between the

residuals and the regressors are frequently used as a basis for GMM. There are six such

equations for the backward-looking model: E(yt−1ϕj,t) = 0 and E(πt−1ϕj,t) = 0 for j = 1,

2, and 3. In test estimations where the sample counterparts of the normal equations were

used in conjunction with the policy optimality restrictions given by (9), GMM repeatedly

converged to a particular set of perverse values: a = α = 1.0 and b = β = 0.0. For these

values, interest rate adjustments have no impact on the output gap or inflation, implying

that any set of policy-rule coefficients will satisfy the first order conditions. When (9)

was excluded from the estimation criterion, however, GMM consistently returned unbiased

estimates that converged to the true values as sample size increased.

We suspect that the algorithm finds a local minimum at false parameter values when the

normal equations are coupled with first order conditions. One potential explanation for this

finding is that the numerical scale of the two sets of orthogonality conditions diverge. To

illustrate this possibility, it is instructive to compute the population moments employed in

GMM. Recall that G is the true reduced-form coefficient matrix and denote Ĝ an estimate

of G. The least squares normal equations evaluated at Ĝ are

E
[
(Xt − ĜXt−1)X

′
t−1

]
= (G− Ĝ)Φx = 0 (14)

where Φx is the population covariance matrix of Xt. The same value of G − Ĝ implies a

smaller value of Q, the GMM estimation criterion, if the diagonal elements of Φx fall.

As a remedy, we remove the dependence of the normal equations on the scale of the data

by restating them as correlations rather than covariances. Using ϕ̂t as an estimate of ϕt,
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one can construct the sample analog of the correlation restrictions as

corr(yt−1, ϕ̂j,t) =

∑T
t=1 yt−1ϕ̂j,t√(∑T

t=1 y2
t−1

)(∑T
t=1 ϕ̂2

t,j

) = 0 (15)

corr(πt−1, ϕ̂j,t) =

∑T
t=1 πt−1ϕ̂j,t√(∑T

t=1 π2
t−1

)(∑T
t=1 ϕ̂2

t,j

) = 0 (16)

for j = 1, 2, and 3. In test estimations where (15) - (16) were used in place of the conventional

normal equations, GMM delivered unbiased estimates of the structural parameters that

converged to the true values with sample size. As a result, the correlation versions of the

least-squares normal equations were used to produce the estimates for all three models.

To evaluate the performance of GMM with the auxiliary moment restrictions, we conduct

a battery of Monte Carlo experiments using two different parameterizations of the policy

equation. The first set of parameters correspond to the optimal values of the policy-rule

coefficients. The second set, however, is not optimal for any possible combination of loss

function weights.5 The data generating process for each is given by (3) where G is computed

for the true parameter values and ϕt is the output of a multivariate normal random number

generator.

For the backward-looking model, GMM estimation entails eight moment restrictions.6 Six

of those restrictions require that the residuals from each of the three reduced-form equations

be uncorrelated with the lagged state variables {yt−1, πt−1}. The remaining two restrictions

5The suboptimal policy coefficients chosen for this particular exercise are θy = 0.20 and θπ = 2.00. Given
the structural parameters, which are held fixed across both cases, there are no values of Wy and Wr that
render the policy rule optimal.

6The numerical routine used in the experiments was PATERN from Version 6 of the GQOPT Library of
Fortran optimization programs. PATERN is a direct search algorithm that combines exploratory searches
parallel to the parameter-space axes. As the performance of direct search algorithms is known to be sensitive
to initial step size, PATERN was called several times in succession with decreasing initial step sizes. The
estimation algorithm employed two sets of calls to PATERN. For the first set, the GMM weighting matrix
was the identity matrix. The optimal weighting matrix was then estimated according to the formula given
by Hamilton (1994, p. 413) before a second set of calls to PATERN was undertaken.
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require that the partial derivatives of Λ with respect to θy and θπ vanish.

Table 1 reports estimates for the case where the policy-rule coefficients are loss mini-

mizing. The left panel reports results when the optimal-policy restrictions are not imposed

during estimation. The right panel reports results when the restrictions are imposed. The

left panel reports statistics for six parameters {a, b, α, β, θy, θπ}; the right panel for these six

plus {Wy,Wr}. The parameters are exactly identified in both panels.

The typical entries in the table are the average and standard deviation of parameter

estimates computed across a subset of 100 trials. Trials where estimates converged to outlying

values were excluded from the statistics on the grounds that a researcher would re-start the

algorithm rather than accept the outlying estimates. The table reports the fraction of trials

over which average and standard deviation were computed. As sample size increased, fraction

converged to 1.0.

Table 1 supports a number of conclusions. First, GMM returns unbiased estimates of

all structural parameters that converge to the true values as sample size increases. The

policy-rule coefficients are also unbiased and precisely estimated even in small samples. A

comparison across both panels illustrates that the consistency of the GMM estimator is

unchanged by the inclusion of auxiliary moment restrictions that constrain the choice of

θ. Second, when the optimality restrictions are imposed, GMM delivers unbiased estimates

of Wy and Wr that converge to the true values with sample size. Unlike the remaining

structural parameters, however, convergence of the loss function weights is slower, resulting

in estimates that are statistically insignificant in smaller samples. Although not reported

in the table, the partial derivatives of loss with respect to the policy coefficients averaged

10−6 in samples of size 250 and 10−10 in samples of size 5000. We conclude that augmenting

the GMM criterion with the appropriate optimality restrictions is a useful way of estimating

policy-rule coefficients that minimize expected loss.

Table 2 reports the case when the optimal policy restrictions are imposed even though the
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true values of the policy-rule coefficients are not loss minimizing for any values of {Wy,Wr}.
Imposing false optimality restrictions does not bias estimates of a, b, or α, and does not bias

estimates of the policy-rule coefficients. It seriously biases estimates of β, the coefficient on

the output gap in the Phillips curve. It also produces estimates of Wy and Wr that converge

to zero with sample size. As we will see, the finding that including false optimality conditions

biases estimates of structural parameters but not policy-rule coefficients holds true in all of

the models we study.

This exercise illustrates that caution should be taken when conditioning estimation on

the assumption of policy optimality. For our backward-looking model, a casual interpretation

of the results would lead to the erroneous conclusion that output-gap fluctuations have little

impact on inflation. Moreover, estimates of Wy and Wr would imply that the central bank

cares only about stabilizing inflation.

Why does our algorithm lead to bias of some structural parameters but not the policy-rule

coefficients? We conjecture that the normal equations tightly identify the policy coefficients.

Consequently, when forced to locate an optimal policy, GMM seeks values of the structural

parameters and loss function weights that make the true value of θ appear optimal. Instead

of settling on biased values of the policy coefficients, the algorithm finds an alternative

economic world in which the true values of the policy coefficients are closer to optimal.7

3.2. A forward-looking rational expectations model

In this section we apply the GMM algorithm to the small-scale empirical New Keynesian

model estimated by Salemi (2006). It is structurally similar to the kinds of models popular-

ized by Clarida et al. (1999) in that the key aggregate relationships are compatible with an

underlying framework based on optimizing agents. While it emphasizes the role of forward-

7We address this issue in more detail in an appendix to the paper which can be accessed along with other
supplementary material at ScienceDirect (www.sciencedirect.com) or from the corresponding author upon
request.
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looking behavior and rational expectations, the model also incorporates a substantial degree

of endogenous persistence in the form of multiple lags of output and inflation. The complete

model is a three equation system given by

yt = λEtyt+1 + a1yt−1 + a2yt−2 − b(rt − Etπt+1) + ut (17)

πt = α1Etπt+1 + α2πt−1 + βyt + vt (18)

rt = θy1yt−1 + θππt−1 + θrrt−1 + θy2yt−2 + wt (19)

where all variables carry the same definition used in the previous example and each is ex-

pressed as percent deviations from trend. The stochastic variables {ut, vt, wt} are serially

uncorrelated shocks to aggregate demand, aggregate supply, and monetary policy, respec-

tively.

The IS equation (17) is loosely consistent with a linearized Euler condition characteriz-

ing the optimal consumption plan in a dynamic general equilibrium setting. As explained

in Clarida et al. (1999), the inverse relationship between current output and the real in-

terest rate reflects intertemporal substitution on the part of households, and the presence

of expected future output is motivated by a desire to smooth consumption.8 In contrast,

the rationale for including two lags of output is largely empirical. Fuhrer and Rudebusch

(2004), for instance, obtain formal estimates of the parameters of a generalized New Keyne-

sian output equation and conclude that multiple lags are essential for explaining the dynamic

properties of real output.

Equation (18) is a “hybrid” version of the New Keynesian Phillips curve analyzed by Gaĺı

and Gertler (1999). The dependence of current inflation on expected future inflation and the

output gap emerges from an environment of monopolistically competitive firms that adjust

8We say that (17) is “loosely” consistent with the consumption Euler condition because, as shown in the
next section, an aggregate demand specification derived explicitly from household optimization implies a
number of additional cross-parameter restrictions on the values of λ, a1, a2, and b.
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prices in a staggered fashion (e.g., Taylor (1980) and Calvo (1983)). The presence of lagged

inflation is justified largely on the basis of recent empirical studies. Estrella and Fuhrer

(2002), for example, criticize the purely forward-looking Phillips curve on the grounds that

it is inconsistent with the inertial behavior of inflation observed in U.S. data.

In the backward-looking model, one can easily find analytic expressions for the reduced-

form matrix G. The addition of forward-looking variables and rational expectations in the

present model, however, make the construction of analytic solutions problematic. We use

the technique of Blanchard and Kahn (1980) to find the reduced-form solution to the system

given by (17) - (19). Accordingly, we define the state vector to be Xt = [yt πt rt yt−1]
′ and

express the model in compact form as:




Xt

Etyt+1

Etπt+1




= B




Xt−1

yt

πt




+ D




ut

vt

wt




(20)

where B and D are (6 × 6) and (6 × 3) matrices the elements of which are completely

determined by the set of underlying structural parameters and the policy rule coefficients.

A unique bounded solution of the form (3) exists if the number of unstable eigenvalues of B

equals the number of forward-looking variables in (20).9

Without analytic solutions, estimation becomes more complicated because there are no

analytic expressions for the elements of ∂(G⊗G)
∂θk

. Consequently, we employ symmetric finite

differences to obtain a numerical approximation of the partial derivative expression involving

the Kronecker product of G. Figure 2 illustrates how the partial derivatives of Λ with respect

to all four policy-rule coefficients vary with departures of θπ from its optimal value. At the

optimum, the numerical derivative function returns numbers on the order of 10−12. The

9The values chosen for the structural parameters are taken from Salemi (2006) and satisfy all the necessary
stability conditions. Those values along with the estimation results are reported in Table 3.
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derivatives increase rapidly to values in the neighborhood of 10−3 as θπ moves away from

its optimal value. The implication is that an estimation criterion that includes (9) can still

discriminate between optimal and suboptimal values of θ even when analytic expressions for

the elements of G are not available.

To assess the performance of GMM in the context of a forward-looking rational ex-

pectations model, we conduct a battery of Monte Carlo experiments. When the opti-

mal policy restrictions are not imposed, estimation is based on twelve least-squares nor-

mal equations. These include the sample correlations between the lagged state variables

{yt−1, πt−1, rt−1, yt−2} and the three reduced-form errors. When the optimality hypothesis

is imposed, the GMM criterion includes the normal equations in addition to four partial

derivative restrictions corresponding to {θy1, θπ, θr, θy2}.
Table 3 reports findings for the case in which the optimality hypothesis is true. A num-

ber of conclusions can be drawn. First, GMM consistently returns unbiased estimates of all

structural parameters that converge to the true values with sample size. Estimates of the

policy rule are unbiased and statistically significant even in small samples. A comparison

across both panels reveals that these results are unaffected by the use of optimality restric-

tions in the course of estimation. Second, although there is little evidence of bias, GMM

tends to deliver imprecise estimates of some structural parameters in smaller samples. The

standard error for α2, for instance, is quite large for a sample size of 100. Third, impos-

ing the optimality restrictions when they are true reduces the uncertainty surrounding the

estimates of many key structural parameters. The improvement is most noticeable for the

IS equation, as the sample standard errors accompanying the estimates of λ, a1, a2, and

b are each smaller than their counterparts under least squares estimation. Fourth, when

the optimality hypothesis is imposed, GMM returns unbiased estimates of Wy and Wr that

converge to the true values with sample size.

Table 4 reports findings for the case in which a false optimality assumption is imposed.
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In this example, the true values of the policy-rule coefficients (θy1 = .50, θπ = 1.50, θr = .50,

θy2 = 0) do not minimize the central bank’s loss function for any combination of weights

{Wy,Wr}. Despite conditioning estimation on false optimality restrictions, GMM still re-

turns unbiased estimates of the policy-rule coefficients at all sample sizes. In contrast, the

estimates of some structural parameters are biased and insignificant. The estimate of λ is

far below the true value, implying a weak connection between current output and expected

future real interest rates. The estimates of α2 and β are likewise too small. These results

would lead a researcher to the mistaken conclusion that the inflation process is less inertial

and that fluctuations in excess demand have a more modest impact on inflation dynamics.

Finally, estimates of Wy and Wr are near zero and statistically insignificant. Thus, given

the observed policy behavior embodied by the actual feedback coefficients, basing estimation

on a set of false optimality conditions drives the loss function weights to values that would

suggest a policy of strict inflation targeting.

In contrast to the backward-looking model, estimation of our forward-looking model

entails over identification of the structural parameters. When the optimality restrictions

are not imposed, twelve moment conditions (all three residuals must be uncorrelated with

each of the four regressors) are used to obtain estimates of eleven parameters. Imposing

the optimality restrictions expands the parameter space by two (Wy and Wr) while adding

four moment conditions (four partial derivatives). Because the number of orthogonality

conditions exceeds the number of parameters to be estimated, we can test the restrictions

implied by the forward-looking model under both assumptions about policy. Under the null

hypothesis that the actual population moments are truly zero, Hansen (1982) proposes a

simple test based on the finding that Q×T should be asymptotically distributed chi-squared

with degrees of freedom equal to the number of over-identifying restrictions.10

Table 5 reports the rejection frequency of the over-identifying restrictions as a function

10Recall that Q is the minimized GMM criterion and T is the sample size.
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of test size and sample size. When the optimality hypothesis is not imposed, estimation

implies one over-identifying restriction. When it is imposed, estimation implies three over-

identifying restrictions. Overall, the figures in Table 5 support three general conclusions.

One, the likelihood of rejecting the over-identifying restriction is higher than expected in

small samples when the optimality hypothesis is not imposed. The rejection frequency does,

however, gradually converge to the expected number as sample size increases. Two, the chi-

squared test rejects too often even in large samples when estimation is conditioned on the true

hypothesis of policy optimality. At a sample size of 5000, for instance, the restrictions are

rejected in forty-one percent of samples by a twenty-five percent test and in fourteen percent

of samples by a one percent test. Thus, it appears that GMM will too often reject the over-

identifying restrictions implied by the forward-looking model even when the corresponding

population moments are really zero. Three, imposing a false optimality hypothesis leads to

a rejection of the over-identifying restrictions at every test size and every sample size over

100. The implication is that the standard test has substantial power to reject the optimality

restrictions when they are indeed false.

3.3. A representative-agent general equilibrium model

The third model selected for estimation belongs to a larger family of dynamic general

equilibrium models described by Goodfriend and King (1997) as the “New Neoclassical

Synthesis.” The model integrates Keynesian elements, like staggered price-setting and mo-

nopolistic competition, into an otherwise standard business cycle framework emphasizing

intertemporal optimization and rational expectations.11 In short, a representative household

chooses optimal sequences of consumption and labor supply to maximize expected lifetime

utility subject to a conventional budget constraint. Profit-maximizing firms stagger price

contracts in the fashion of Calvo (1983) and manufacture differentiated products using la-

11Models belonging to this family include Rotemberg and Woodford (1997), McCallum and Nelson (1999a),
and King and Wolman (1999).
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bor and capital. In addition, the model features two sources of mechanical persistence in

the form of habit formation in consumption (e.g. Furhrer (2000)) and partial indexation to

lagged inflation (e.g. Smets and Wouters (2003)).

The complete model characterizes the equilibrium dynamics of four variables: yt, πt, rt,

and yn
t , the natural rate of output prevailing under flexible prices. The following equations

constitute a log-linear approximation of the model’s equilibrium conditions expanded around

a zero-inflation steady state.

b∆yt = (1 + βb2)Et∆yt+1 − βbEt∆yt+2 − σ̃ [rt − Etπt+1] + σ−1(1− b)ut (21)

πt =
γ

1 + βγ
πt−1 +

β

1 + βγ
Etπt+1 +

(
(1− ε)(1− βε)

(1 + βγ)ε

)(
χ + α

1− α

)
(yt − yn

t ) (22)

yn
t =

1− α

χ + α

[
1 + χ

1− α
vt + (1− βb)−1ut − σ̃−1

[
(1 + βb2)yn

t − byn
t−1 − βbEty

n
t+1

]]
(23)

rt = θππt−1 + θyyt−1 + θrrt−1 + wt (24)

where σ̃ ≡ σ−1(1− b)(1− βb) and ∆ is the first difference operator.12

Equation (21) can be interpreted as an intertemporal IS schedule where σ̃ measures

the sensitivity of consumption plans to changes in the real interest rate. The stochastic

parameter ut is a serially uncorrelated demand shock generating exogenous variation in

the marginal utility of consumption. As illustrated by Amato and Laubach (2004), habit

formation implies that the current growth rate of output depends on expectations of future

growth rates. Without habit formation (b = 0), (21) collapses to the familiar IS equation

discussed in Woodford (1999).

Equation (22) is a Phillips curve governing the dynamic behavior of inflation. The as-

sumption that firms index to lagged inflation when they are blocked by the Calvo mechanism

from re-optimizing their price makes current inflation depend on past inflation. Without in-

12Details about the preference structure of the model and the corresponding equilibrium conditions can
be found in an appendix to the paper available from ScienceDirect.
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dexation (γ = 0), (22) reduces to the purely forward-looking New Keynesian Phillips curve

analyzed by Gaĺı and Gertler (1999) that links inflation to expected future inflation and the

theoretical output gap defined as yt − yn
t .

Because the loss function consistent with the present model depends on yt − yn
t , it is

necessary to track the evolution of output under flexible prices. Equation (23) implicitly

defines yn
t as a function of yn

t−1 and two stochastic disturbances, the demand shock ut and a

serially uncorrelated technology shock vt.

In the spirit of Rotemberg and Woodford (1997), alternative policies are ranked on a

welfare-basis according to a loss function that is derived by taking a quadratic approximation

to the representative consumer’s expected lifetime utility.

Λ = Et

∞∑
j=0

βj
[
Wπ(πt+j − γπt+j−1)

2 + Wy

(
(yt+j − yn

t+j)− δy(yt+j−1 − yn
t+j−1)

2
)]

(25)

The added persistence generated by indexation and habit formation implies that the pol-

icy goals consistent with household optimization involve stabilizing a measure of inflation

relative to its own lag and the current output gap relative to last period’s. Additionally,

the set of coefficients {Wπ,Wy, δy} are not free, but rather specific functions of the under-

lying structural parameters. In the absence of indexation (γ = 0) and habit formation

(b = 0 ⇒ δy = 0), (25) reduces to the well-known loss function defined over the second

moments of inflation and the output gap alone.13

To find the rational expectations solution to the system of equations given by (21) - (24),

we re-define the state vector to be Xt = [yt πt rt yn
t yt−1 πt−1 yn

t−1]
′ and express the model

13For a comprehensive derivation of the welfare function, refer to Woodford (2003, Chapter 6)
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in compact form. 


Xt

Etyt+1

Etyt+2

Etπt+1




= B




Xt−1

yt

Etyt+1

πt




+ D




ut

vt

wt




(26)

B and D are (10× 10) and (10× 3) matrices whose elements are nonlinear functions of the

parameters appearing in the model. Having augmented the state vector with the relevant

lags, we can reformulate (25) in terms of Xt with weight matrix given by

W =




Wy 0 0 −Wy −δyWy 0 δyWy

0 Wπ 0 0 0 −γWπ 0

0 0 0 0 0 0 0

−Wy 0 0 Wy δyWy 0 −δyWy

−δyWy 0 0 δyWy δ2
yWy 0 −δ2

yWy

0 −γWπ 0 0 0 γ2Wπ 0

δyWy 0 0 −δyWy −δ2
yWy 0 δ2

yWy




.

We use the method of Blanchard and Kahn (1980) discussed in the previous section to

determine the model’s reduced-form representation.

Xt = GXt−1 + Hεt (27)

G and H are (7× 7) and (7× 3) matrices of reduced-form coefficients, and εt = [ut vt wt]
′ is

the vector of structural shocks with covariance matrix Σ.14

Estimating a model that is specified at the level of individual preferences presents chal-

lenges that do not emerge in the previous two models. For one, the mapping from the

14In terms of the notation introduced earlier, Hεt = ϕt, implying that structural and reduced-form error
covariance matrices are related by Φ = HΣH ′.
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structural parameters to the reduced form is more complicated because the slope coefficients

appearing in (21) - (23) are themselves nonlinear functions of the structural parameters.

This makes it impossible to identify every parameter, and as a result, some must be fixed

prior to estimation. For parameters that are identified, the complexity of the additional

cross-equation restrictions sometimes makes it difficult to obtain precise estimates in small

samples. The identified parameters include the degree of habit formation b, the inverse elas-

ticity of substitution σ, the fraction of non-adjusting firms ε, the inverse wage elasticity of

labor supply χ, and the degree of partial indexation γ. A description of each parameter, in-

cluding those that are not identified, appears in Table 6. The values chosen for the structural

parameters are broadly consistent with estimates obtained in numerous empirical studies of

dynamic general equilibrium models.

A second challenge arises due to the relationship between the structural parameters and

the reduced form errors. Recall that the exogenous shocks have a particular economic inter-

pretation within the context of a representative agent model. Consequently, the structural

error covariance matrix Σ should remain invariant to changes in the structural parameters ρ

and the policy rule coefficients θ. If Σ is fixed, however, a change in ρ or θ implies a change in

the reduced-form error covariance matrix given by Φ. It follows that the partial derivatives

of Λ with respect to the elements of θ must account for the implied change in Φ in order to

correctly compute the first order conditions associated with an optimal policy. Recognizing

that changes in θ now impact G and Φ, we obtain the following modification of the partial

derivative expression appearing in (7):

∂vec(M)

∂θk

= Dk(ρ, θ)× vec(HΣH ′) +

(
1

1− β

)
[I − βG⊗G]−1 × ∂vec(HΣH ′)

∂θk

(28)

where Dk is the matrix defined in (8) with the central bank discount factor given by β.

Denote ε̂t the sample estimate of εt which can be recovered from the estimate of ϕ̂t. Let
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Σ̂ = 1/T
∑T

t=1 ε̂tε̂
′
t be the corresponding matrix of time t residual variances. Using Σ̂ as an

estimate of Σ in the modified partial derivative expression, one can construct the sample

analog of the central bank’s first order conditions summarized by (7).

We assess the performance of the GMM algorithm by Monte Carlo simulations. When the

optimality hypothesis is not imposed, the estimation criterion is based on nine least-squares

normal equations. Specifically, these include the sample correlations between {yt−1, πt−1, rt−1}
and the three reduced-form errors associated with output, inflation, and the nominal inter-

est rate. When the optimality hypothesis is imposed, estimation is based on twelve re-

strictions, the nine normal equations plus three partial derivative restrictions corresponding

to {θπ, θy, θr}. In contrast to the previous two examples, the assumption that the policy-

maker minimizes a loss function consistent with household welfare implies that the preference

weights are known functions of the structural parameters. Thus, imposing the optimality

hypothesis increases the number of moment conditions used for estimation while leaving the

number of parameters to be estimated unchanged.

Table 7 reports findings for the case in which the optimality hypothesis is true. The ex-

periments support several findings. First, for all structural parameters that can be identified,

GMM returns unbiased estimates that converge to the true values with sample size. This

result does not hinge on whether or not the optimality restrictions are imposed in the course

of estimation. Second, GMM delivers imprecise estimates of σ and χ when the sample size

is relatively small. Inspection of the model reveals that σ is identified through the impact of

changes in the real interest rate on output growth in (21), and χ through the affect of fluctu-

ations in the theory-based output gap on inflation in (22). Unfortunately, both parameters

are confounded with others that are estimated with more precision, making them difficult

to identify in small samples. Third, imposing the optimality restrictions when they are true

sharpens estimates of many of the structural parameters. The standard errors for γ, ε, and

χ are an order of magnitude smaller than their counterparts under least-squares estimation
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in large samples. Fourth, the ability of GMM to deliver unbiased estimates of the structural

parameters guarantees that the weights in the central bank’s objective function converge to

the true values with sample size.15

Concerning the policy-rule coefficients, GMM returns unbiased estimates of {θπ, θy, θr}
at all sample sizes regardless of whether or not the optimality restrictions are imposed. In

contrast to many of the structural parameters, the policy coefficients are precisely estimated

even for small samples. Evidently, the primary advantage in the present model of basing

estimation on an expanded set of moment conditions is that it reduces the uncertainty

surrounding some of the key structural parameters.

Table 8 reports findings for the case in which the optimality hypothesis is false. The

Monte Carlo evidence suggests that GMM consistently returns unbiased estimates of the

policy-rule coefficients at all sample sizes. Imposing false optimality restrictions, however,

leads to biased estimates of several important structural parameters. Like with the previous

models, the normal equations place a stronger set of restrictions on the policy coefficients

than they do on the structural parameters. Thus, when estimation is conditioned on a false

optimality assumption, GMM basically searches for values of the structural parameters that

render the true policy coefficients optimal. In other words, the algorithm tries to locate

an alternate economic universe in which the observed policy rule would be nearly optimal.

The outcome is biased estimates of the structural parameters but unbiased estimates of the

policy rule-coefficients.

Table 9 presents the frequency of rejection of the over-identifying restrictions as a function

of test size and sample size. When the optimality hypothesis is not imposed, estimation

implies one over-identifying restriction. When it is imposed, estimation implies four over-

identifying restrictions. The figures in Table 9 indicate that the rejection frequency is too high

15The values of Wπ and Wy reported in the Tables 7 and 8 are the ones implied by the estimates of the
remaining structural parameters. The sample standard errors are computed in the usual way.
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in small samples when estimation is based on the least-squares normal equations alone. As

sample size increases, however, the rejection frequency converges to the expected number.

Similarly, the likelihood of rejection is too large in smaller samples when the optimality

restrictions are true and imposed. Finally, in the event that a false optimality hypothesis

is imposed, the over-identifying restrictions are rejected at every test size and every sample

size over 100. Even at a sample size of 100, the restrictions are rejected in 88 percent of

samples by a one percent test and in 98 percent of samples by a five percent test. Thus, the

test again demonstrates great power to reject the optimal-policy moment restrictions when

they are false.

4. Taking the models to the data with GMM

In this section we demonstrate our GMM algorithm with an application to U.S. data. The

sample includes quarterly observations spanning 1979:III to 2001:IV on the output gap, the

target-adjusted inflation rate, and the target-adjusted nominal interest rate.16 We use the

first two observations to initialize the system and treat the remaining data as observations on

a single policy regime. To underscore the significance of imposing optimal policy restrictions

in the course of estimation, we compare outcomes in two cases. In the first case, reaction

function coefficients are unrestricted, and in the second, they are restricted to satisfy the

first order conditions for a loss-minimizing policy.

We begin with an assessment of model fit. For all three models and for both assumptions

about policy, Table 10 reports the minimized GMM criterion, the chi-squared test statistic

for the model’s over-identifying restrictions, and “pseudo log likelihood” obtained by scaling

the natural logarithm of the determinant of the residual-error covariance matrix.

Table 10 supports a number of conclusions. First, the low pseudo log likelihood value

indicates that the backward-looking model fits the data poorly. This finding is not sur-

16Refer to Salemi (2006) for information about the data set and for a discussion of the detrending procedure.
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prising considering the abbreviated lag length and the absence of any transmission lags in

the model. Rudebusch and Svensson (1999) demonstrate that a purely backward-looking

model can fit the data with multiple lags in the IS and Phillips curve equations. Second,

the forward-looking model fits the data better than the representative agent model with or

without optimal policy restrictions imposed. Nevertheless, one would reject the null hypoth-

esis that observed policy-rule coefficients are those that minimize expected loss at standard

significance levels. Third, the representative agent model describes the data well when opti-

mal policy restrictions are not imposed. The hypothesis that the Federal Reserve maximizes

expected utility, however, is soundly rejected.

Table 11 reports estimates of the structural parameters for the forward-looking and rep-

resentative agent models.17 The estimates for the forward-looking model are properly signed,

of plausible size, and close to the values reported in Salemi (2006). Imposing optimal policy

restrictions alters some of the parameter estimates in a meaningful way. For example, the

estimate of λ becomes smaller, pointing to a reduced role for expected output in the IS

equation when policy-rule coefficients are forced to satisfy the necessary conditions for loss

minimization. At the same time, the estimates of a1 and a2 become larger in magnitude,

signalling an increased dependence on lagged output. Interestingly, the estimates of the

Phillips curve are little affected by the inclusion of optimal policy restrictions. In both cases,

the estimate of α1 suggests that inflation is primarily backward looking, and the estimate of

β indicates that the Phillips curve is relatively flat.

Imposing optimal policy restrictions has an even larger impact on estimates of the repre-

sentative agent model. When the reaction function coefficients are unrestricted, the estimate

of b, the degree of habit formation, is 0.87, close to the values reported by Fuhrer (2000)

17The parameter estimates for the backward-looking model have the wrong sign in many cases. Rather
than re-specifying the model in a way that improves its empirical fit, we concentrate on estimates of the
forward-looking and representative agent models. Both models are more richly parameterized and have been
taken to the data by others.
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and Heaton (1995). In the restricted case, however, the estimate of b approaches the upper

limit of the parameter space. The coefficient of relative risk aversion σ is 4.43 when the

optimality restrictions are not imposed and near zero when they are. Regarding the esti-

mates that govern price-setting behavior, the indexation parameter γ is 0.76 and the Calvo

probability ε is 0.98 when policy-rule coefficients are unrestricted. Both of these estimates

are somewhat larger, but still consistent with, the values reported by Smets and Wouters

(2005). Augmenting GMM with optimal policy restrictions, however, lowers the degree of

price stickiness and drives the indexation parameter to unity. Finally, the inverse labor sup-

ply elasticity parameter χ is near zero in both cases, implying that the labor supply schedule

is essentially flat.

Table 11 also reports estimated standard errors for both models computed using the for-

mula for the asymptotic covariance matrix given in Hamilton (1994, p. 415). The estimated

standard errors are large in many cases, indicating that the data contain only imprecise

information about the structural parameters. However, standard errors are typically smaller

when the optimal policy restrictions are imposed, bolstering our claim that incorporating

moment conditions consistent with loss minimization reduces uncertainty surrounding many

parameter estimates. The exceptions are those coefficients that reside on the boundary of

the allowable parameter space.

Table 12 reports estimates of the policy-rule coefficients and the corresponding loss func-

tion weights for the forward-looking and representative agent models. To help clarify the

impact of using optimality conditions in the course of estimation, we also report the partial

derivatives of loss for both the unrestricted and restricted cases.18 For the forward-looking

model, imposing optimal policy restrictions leads to larger estimates of the coefficients on

lagged output, illustrating the tension between fitting the interest rate series and satisfy-

18For the forward-looking model, we use the weights estimated in the restricted case to compute derivatives.
For the representative agent model, we use the weights implied by the unrestricted estimates of the structural
parameters.
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ing the loss-minimizing criteria. The coefficient on the lagged interest rate is large and

significant in both cases, indicating that policy inertia is a characteristic shared by actual

Federal Reserve behavior as well as policies that minimize expected loss. The coefficient on

lagged inflation is also positive and significant regardless of the inclusion of optimal policy

restrictions. Taken together, the results imply that a one percent increase in inflation is

accompanied by an even greater percent increase in the interest rate over time as required

by the Taylor principle. Finally, the data are best reconciled with the optimality hypothesis

under a loss function that places all weight on inflation stabilization and none on output gap

or interest rate stabilization.19

The policy-rule coefficients for the representative agent model are similar to those of the

forward-looking model when the optimality conditions are not imposed during estimation.

The coefficients on lagged inflation and the lagged interest rate, for instance, are positive

and significant. The coefficient estimate on lagged output is approximately equal to the sum

of the coefficients on one and two lags of output in the forward-looking model. Based on the

derivative estimates, it is also clear that the reaction function coefficients are far from those

that maximize expected utility. The partial derivatives of loss are on the order of 101 to 103.

Given the estimates of the structural parameters in Table 11, the quadratic welfare function

discussed in section 3.3 places a much greater weight on quasi-differenced inflation than on

the quasi-differenced output gap.

The results are dramatically altered when optimal policy restrictions are imposed during

estimation. The coefficient on lagged output is a much larger negative, the inflation coef-

ficient is very large and positive, and the coefficient on the lagged interest rate is close to

zero. None of these is estimated with much precision. While smaller than their unrestricted

counterparts, the partial derivatives are not close enough to zero to make certain that GMM

19Salemi (2006) reports a similar finding. Favero and Rovelli (2003) and Dennis (2004) also report very
little concern for output gap stability in U.S. data.
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has located an optimal policy. Thus, we conclude that the estimation algorithm cannot

reconcile U.S. data with the hypothesis that the Federal Reserve set policy to maximize

expected utility. In fact, we find that the parameter vector that fits the data best violates

the saddlepath property, the eigenvalue condition that ensures a stable, unique rational ex-

pectations equilibrium. We take this as additional evidence that imposing optimal policy

restrictions leads to a severe deterioration in the empirical performance of the representative

agent model.

5. A comparison of GMM with alternative procedures

To better illustrate the potential costs and benefits of the GMM algorithm, we compare

outcomes using our methodology with outcomes from two alternative estimation procedures

commonly used in the inverse control literature. The first approach is the nested or “brute

force” strategy discussed in the introduction which applies full information maximum likeli-

hood (FIML) to estimate the structural parameters of the model as well as the loss function

weights. The second approach employs a two-step estimator based on GMM methods that

has recently been examined by Lippi and Neri (2007) and Ehrmann and Smets (2003) in the

context of a small-scale New Keynesian model. In discussing the differences among the three

estimation procedures, we perform Monte Carlo experiments only on the forward-looking

model studied in section 3.2.

5.1. GMM vs. FIML

In contrast to our GMM strategy, the FIML procedure nests the loss minimization prob-

lem of the central bank within the estimation algorithm of the econometrician. Formally, the

nested approach searches over values of the structural parameters and loss function weights

for those that maximize the likelihood function implied by the model’s reduced form (e.g.,

Dennis (2004), Dennis (2005), and Salemi (2006)). The optimal coefficients of the policy rule
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are computed for each set of parameters considered in the course of estimation, including

those that do not fit the data.20

In comparing the performance of the estimation procedures, we conduct two separate

Monte Carlo experiments. In the first experiment, the true policy-rule coefficients are opti-

mal and, in the second, they are not optimal for any parameterization of the loss function.

Table 13 reports findings for the case in which the optimality hypothesis is true. Not surpris-

ingly, we find that FIML and GMM deliver unbiased estimates of all model parameters that

approach the true values as sample size increases. Although we argue that GMM is computa-

tionally more efficient, FIML appears to have at least one advantage.21 In small samples the

FIML standard errors are uniformly smaller than their GMM counterparts except for those

associated with the policy-rule coefficients (in which case they are approximately equal).

Table 14 reports findings for the case in which the optimality hypothesis is false. Like

GMM, imposing false optimality restrictions leads to bias in the FIML estimates of some

structural parameters. However, the bias need not appear in the same coefficients for both

procedures. For example, the GMM estimate of λ is biased towards zero but the FIML

estimate is unbiased. Alternatively, the FIML estimate of α1 is too large while the GMM

estimate is accurate. Our methodology does have one clear advantage over the nested ap-

proach. When false optimality restrictions are imposed, the FIML estimates of the policy-rule

coefficients are significantly biased and the standard errors are large. In contrast, the GMM

estimates are always unbiased and precise irrespective of the assumptions made about central

bank preferences.

5.2. GMM vs. a two step estimator

The finding that policy-rule coefficients are always estimated without bias and with good

20Refer to the appendix and other supplementary files (available from ScienceDirect) for a more detailed
discussion of the FIML procedure as well as a comparison of the estimation results with GMM.

21The appendix contains a detailed discussion about the computation time required by both procedures
when the optimality hypothesis is true and when it is false.
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precision under GMM raises the possibility that a two step estimation procedure could

generate more favorable outcomes. We address this point by estimating only the structural

parameters and the policy-rule coefficients in a first step using moment conditions based on

the least-squares normal equations alone. In a second step, we estimate the loss function

weights using a GMM criterion formed exclusively by the partial derivatives of expected loss

while holding all other parameters fixed at their first stage values.22

Table 15 displays the results of Monte Carlo experiments of the forward-looking model

under the proposed two step approach as well as the unified procedure described in section

2. It is clear that the two step procedure yields unbiased estimates of all parameters that

converge to the true values with sample size, including the loss function weights obtained

in the second stage estimation. The standard errors, however, tend to be larger than those

estimated under the unified approach. The loss of precision occurs because the partial

derivatives of expected loss convey information that helps identify structural parameters

when the optimality hypothesis is true.

Despite the accuracy of the parameter estimates, Monte Carlo evidence reveals that the

two step procedure can deliver misleading results about the true conduct of policy. Table

16 reports the partial derivative estimates of expected loss with respect to the policy-rule

coefficients for the unified and two step procedures. For sample sizes of 100 and 1,000, the

partial derivative estimates are very large. Only at a sample size of 10,000 do the two-step

partial derivatives approach zero. As a result, standard tests of the loss-minimizing restric-

tions based on the two step estimates will almost certainly be rejected when the optimality

hypothesis is true. This finding is not as problematic when the optimality restrictions are

false, as we have already shown in Table 5 of section 3.2 that the unified approach has great

power to reject the optimality hypothesis in that case.

22Refer to the appendix for a more detailed discussion of the two step procedure as well as a comparison
of the estimation results with the unified approach based on GMM. The appendix also reports the results
of an exercise that checks the robustness of our GMM algorithm to alternative parameter starting values.
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6. Conclusions

The purpose of this paper is to demonstrate a computationally efficient method for es-

timating the structural parameters of various New Keynesian-style models subject to an

auxiliary condition that requires the policy-rule equation minimize expected loss. Impos-

ing an optimal-policy restriction enables joint estimation of the model parameters and the

policy weights that identify central bank preferences. The empirical strategy advanced here

combines the least-squares normal equations implied by the model’s reduced form with the

first-order necessary conditions consistent with the policymaker’s control problem. The out-

come is a compact set of orthogonality conditions that form the basis for estimation using

GMM. In contrast to its predecessors which rely on maximum likelihood methods (e.g.,

Salemi (2006) and Dennis (2004)), the GMM algorithm eliminates the need to perform an

optimal control exercise for each set of parameters considered during the course of estimation.

To assess the performance of our GMM approach, we conduct Monte Carlo experiments

on three different New Keynesian models that differ in complexity of the structural equations

and in the role of forward-looking behavior. For each model, we consider two opposing

parameterizations of the policy equation. In one, the policy-rule coefficients are optimal for

a given loss function, and in the other, the coefficients are not optimal for any loss function

within the family that we consider. Provided the hypothesis of policy optimality is true,

the Monte Carlo evidence suggests that GMM returns unbiased estimates of all structural

parameters including the relative weights appearing in the central bank’s objective function.

Overall, the benefits from imposing optimal-policy restrictions when they are true emerge

in the form of reduced uncertainty surrounding many of the key structural parameters. One

shortcoming, however, is that for over-identified models, application of the standard chi-

squared test rejects the optimality restrictions too often, particularly in small samples.

Perhaps our most interesting finding concerns the consequences of assuming that policy

is optimal when in reality it is not. Surprisingly, Monte Carlo statistics reveal that GMM
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consistently delivers unbiased and precise estimates of the policy-rule coefficients regardless

of whether or not the optimality hypothesis is true. In contrast, imposing false optimality

restrictions tends to produce bias in some of the key structural parameters for all three

models. In the course of these trials, however, application of the standard chi-squared test

rejects the false optimality restrictions with very high frequency even in small samples.

We also demonstrate our GMM algorithm with an application to U.S. data. Employing

data on inflation, the output gap, and the nominal interest rate, we estimate the parameters

of all three New Keynesian models considered in the paper. Overall, the results suggest

that the forward-looking and representative agent models fit the data well when estimation

is based on least-squares normal equations alone. Augmenting the orthogonality conditions

with first-order conditions from the policymaker’s control problem diminishes the empirical

fit of each model (especially the representative agent model) and alters estimates of some

important parameters.
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Fig. 1. The graph plots the partial derivative of the central bank loss function with respect to the parameters
of the policy rule (θy, θπ) for the backward-looking model. As we vary θy along the interval [.1, .5], we hold
θπ fixed at its optimal value.

41



0.52 0.54 0.56 0.58 0.6 0.62 0.64 0.66 0.68 0.7 0.72
−5

−4

−3

−2

−1

0

1

2

3

4
x 10

−3

P
a

rt
ia

l D
e

ri
va

tiv
e

s

θ
π

∂ Λ / ∂ θ
y1

∂ Λ / ∂ θπ

∂ Λ / ∂ θ
r

∂ Λ / ∂ θ
y2

Fig. 2. The graph plots the partial derivative of the central bank loss function with respect to the parameters
of the policy rule (θy1, θπ, θr, θy2) for the forward-looking model. As we vary θπ along the interval [.53, .73],
we hold θy1, θr, and θy2 fixed at their optimal values.
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Table 1. Backward-looking model

True Optimality Restriction (True): Optimality Restriction (True):
(ρ, θ, W ) Value Not Imposed Imposed

sample size sample size
100 250 500 5000 100 250 500 5000

a 0.90 0.916 0.890 0.898 0.900 0.918 0.892 0.899 0.900
(.23) (.04) (.03) (.01) (.19) (.04) (.03) (.01)

b 0.15 0.349 0.163 0.169 0.150 0.269 0.171 0.179 0.150
(.77) (.13) (.09) (.03) (.53) (.12) (.09) (.03)

α 0.50 0.495 0.493 0.494 0.500 0.497 0.493 0.496 0.500
(.09) (.06) (.04) (.01) (.09) (.06) (.04) (.01)

β 0.10 0.101 0.105 0.106 0.099 0.087 0.107 0.106 0.099
(.08) (.05) (.04) (.01) (.07) (.06) (.04) (.01)

Wy 0.10 – – – – 0.066 0.131 0.129 0.111
(.24) (.23) (.14) (.05)

Wr 0.30 – – – – 0.181 0.452 0.444 0.320
(.33) (.48) (.41) (.12)

θy 0.306 0.291 0.306 0.306 0.308 0.296 0.304 0.305 0.308
(.09) (.05) (.03) (.01) (.08) (.05) (.03) (.01)

θπ 0.102 0.116 0.097 0.107 0.101 0.121 0.110 0.115 0.101
(.11) (.07) (.04) (.01) (.10) (.06) (.04) (.01)

Q .24e-2 .87e-4 .62e-5 .13e-17 .64e-2 .22e-2 .69e-3 .17e-8
Fraction 1.00 1.00 1.00 1.00 0.83 0.85 0.95 1.00

1. For the case in which the hypothesis of policy optimality is true, the table reports estimates of the
following model: yt = ayt−1− b(rt−πt)+ut, πt = απt−1 +βyt + vt, rt = θyyt−1 + θππt−1 +wt. The variables
are defined as: y - output, π - inflation, r - interest rate. Wy and Wr are the loss function weights for y and
r normalized by the unit weight attached to π.

2. Q is the GMM estimation criterion and Fraction reports the fraction of trials that result in no
outliers.

3. The parenthesis contain standard errors computed across Fraction × 100 trials for each sample
size.
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Table 2. Backward-looking model

True Optimality Restriction (False):
(ρ, θ, W ) Value Imposed

sample size
100 250 500 5000

a 0.90 0.875 0.886 0.891 0.898
(.06) (.04) (.02) (.01)

b 0.15 0.138 0.144 0.141 0.146
(.06) (.03) (.02) (.01)

α 0.50 0.485 0.483 0.485 0.487
(.09) (.06) (.04) (.01)

β 0.10 0.047 0.035 0.030 0.026
(.05) (.02) (.01) (.004)

Wy 0.10 0.4e-6 0.67e-6 0.17e-17 0.9e-18
(.3e-5) (.6e-5) (.2e-17) (.11e-17)

Wr 0.30 0.003 0.25e-2 0.22e-2 0.2e-2
(.002) (.07) (.001) (.01)

θy 0.20 0.177 0.182 0.184 0.186
(.07) (.05) (.03) (.01)

θπ 2.00 2.02 2.00 2.01 2.01
(.12) (.07) (.04) (.01)

Q 0.020 0.017 0.016 0.014
Fraction 0.83 0.85 0.95 1.00

1. For the case in which the hypothesis of policy optimality is false and imposed, the table reports
estimates of the following model: yt = ayt−1−b(rt−πt)+ut, πt = απt−1+βyt+vt, rt = θyyt−1+θππt−1+wt.
The variables are defined as: y - output, π - inflation, r - interest rate. Wy and Wr are the loss function
weights for y and r normalized by the unit weight attached to π.

2. Q is the GMM estimation criterion and Fraction reports the fraction of trials that result in no
outliers.

3. The parenthesis contain standard errors computed across Fraction × 100 trials for each sample
size.
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Table 3. Forward-looking model

True Optimality Restriction (True): Optimality Restriction (True):
(ρ, θ, W ) Value Not Imposed Imposed

sample size sample size
100 250 500 5000 100 250 500 5000

λ 0.15 0.207 0.218 0.181 0.134 0.186 0.162 0.139 0.110
(.25) (.22) (.19) (.11) (.23) (.18) (.15) (.07)

a1 1.10 1.04 1.04 1.07 1.12 1.02 1.05 1.08 1.14
(.26) (.22) (.19) (.11) (.23) (.17) (.14) (.07)

a2 -0.30 -0.279 -0.271 -0.290 -0.303 -0.301 -0.300 -0.316 -0.307
(.12) (.08) (.07) (.04) (.12) (.08) (.07) (.02)

b 0.20 0.184 0.184 0.185 0.209 0.147 0.164 0.168 0.219
(.16) (.12) (.09) (.05) (.14) (.10) (.08) (.04)

α1 0.50 0.433 0.407 0.430 0.507 0.372 0.349 0.378 0.504
(.32) (.24) (.21) (.06) (.32) (.23) (.23) (.06)

α2 0.45 1.67 0.481 0.469 0.449 1.04 0.472 0.468 0.448
(12.0) (.07) (.06) (.02) (4.9) (.07) (.06) (.01)

β 0.15 0.196 0.187 0.180 0.150 0.185 0.191 0.184 0.150
(.11) (.08) (.06) (.02) (.12) (.09) (.07) (.01)

Wy 0.10 – – – – 1.37 0.106 0.587 0.076
(8.1) (.22) (3.6) (.07)

Wr 0.30 – – – – 0.749 0.209 0.228 0.314
(6.3) (.21) (.19) (.06)

θy1 1.10 1.09 1.09 1.09 1.10 1.08 1.09 1.09 1.10
(.13) (.09) (.06) (.02) (.15) (.11) (.07) (.02)

θπ 0.63 0.628 0.610 0.625 0.627 0.646 0.635 0.642 0.627
(.10) (.07) (.04) (.02) (.11) (.07) (.04) (.01)

θr 0.23 0.238 0.237 0.236 0.228 0.246 0.240 0.238 0.227
(.08) (.05) (.04) (.01) (.08) (.04) (.04) (.01)

θy2 -0.20 -0.193 -0.189 -0.196 -0.197 -0.209 -0.197 -0.205 -0.197
(.19) (.11) (.07) (.02) (.18) (.11) (.07) (.02)

Q 0.032 .75e-2 .41e-2 .22e-3 0.110 0.036 0.029 .18e-2
(.04) (.76e-2) (.45e-2) (.27e-3) (.17) (.04) (.05) (.60e-2)

Fraction 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1. For the case in which the hypothesis of policy optimality is true, the table reports estimates of the
following model: yt = λEtyt+1 + a1yt−1 + a2yt−2 − b(rt −Etπt+1) + ut, πt = βyt + α1Etπt+1 + α2πt−1 + vt,
rt = θy1yt−1 + θππt−1 + θrrt−1 + θy2yt−2 + wt. The variables are defined as: y - output, π - inflation, r - in-
terest rate. Wy and Wr are the loss function weights for y and r normalized by the unit weight attached to π.

2. Q is the GMM estimation criterion and Fraction reports the fraction of trials that result in no
outliers.

3. The parenthesis contain standard errors computed across Fraction × 100 trials for each sample
size.
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Table 4. Forward-looking model

True Optimality Restriction (False):
(ρ, θ,W ) Value Imposed

sample size
100 250 500 5000

λ 0.15 0.107 0.092 0.075 0.027
(.18) (.13) (.11) (.03)

a1 1.10 1.09 1.15 1.15 1.20
(.19) (.12) (.11) (.03)

a2 -0.30 -0.354 -0.363 -0.361 -0.367
(.13) (.10) (.06) (.02)

b 0.20 0.181 0.202 0.206 0.239
(.11) (.08) (.06) (.02)

α1 0.50 0.568 0.555 0.559 0.582
(.27) (.13) (.13) (.04)

α2 0.45 0.372 0.356 0.351 0.352
(.10) (.08) (.05) (.01)

β 0.15 0.119 0.108 0.111 0.103
(.06) (.04) (.03) (.01)

Wy 0.10 0.003 0.74e-4 0.78e-4 0.3e-17
(.02) (.74e-3) (.78e-3) (.4e-17)

Wr 0.30 0.001 0.14e-3 0.46e-4 0.3e-17
(.004) (.07e-3) (.46e-2) (.5e-17)

θy1 0.50 0.489 0.479 0.468 0.471
(.11) (.07) (.06) (.01)

θπ 1.50 1.47 1.52 1.53 1.54
(.20) (.09) (.10) (.02)

θr 0.50 0.512 0.509 0.506 0.506
(.06) (.03) (.04) (.01)

θy2 0.00 0.009 -0.82e-3 0.003 -0.006
(.18) (.09) (.10) (.02)

Q 0.224 0.145 0.141 0.113
(.23) (.09) (.11) (.005)

Fraction 1.00 1.00 1.00 1.00

1. For the case in which the hypothesis of policy optimality is false and imposed, the table reports estimates
of the following model: yt = λEtyt+1+a1yt−1+a2yt−2−b(rt−Etπt+1)+ut, πt = βyt+α1Etπt+1+α2πt−1+vt,
rt = θy1yt−1 + θππt−1 + θrrt−1 + θy2yt−2 + wt. The variables are defined as: y - output, π - inflation, r - in-
terest rate. Wy and Wr are the loss function weights for y and r normalized by the unit weight attached to π.

2. Q is the GMM estimation criterion and Fraction reports the fraction of trials that result in no
outliers.

3. The parenthesis contain standard errors computed across Fraction × 100 trials for each sample
size.
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Table 5. Rejection frequency of over-identifying restrictions

Optimal Policy Degrees of Sample Test Size
Restriction Freedom Size .25 .10 .05 .025 .01

True 1

100 60 40 29 17 11
Not 250 51 27 12 6 2

Imposed 500 52 28 17 10 5
5000 32 13 5 2 1

True Imposed 3

100 64 48 40 34 24
250 63 43 39 32 28
500 60 48 42 38 29
5000 41 28 20 18 14

False Imposed 3

100 98 96 96 91 81
250 100 100 100 100 100
500 100 100 100 100 100
5000 100 100 100 100 100

Note: For the forward-looking model, the table reports the frequency of rejection of the over-identifying
moment restrictions as a function of test size, sample size, whether or not the optimality restriction is true,
and whether or not the optimality restriction is imposed during estimation. The values recorded are given
in percentages and are computed across 100 trials for each sample size.

Table 6. Parameters for the representative agent model

Parameter Description Value
b degree of habit formation 0.65
σ inverse of the intertemporal elasticity of substitution 2.00
γ degree of partial price indexation 0.75
β household subjective discount factor 0.99∗

ε fraction of firms unable to reset prices 0.50
χ inverse of the wage elasticity of labor supply 2.00
α capital elasticity of output 0.33∗

η elasticity of demand for intermediate goods 11.0∗

θπ optimal policy rule coefficient on inflation 9.28
θy optimal policy rule coefficient on output 0.28
θr optimal policy rule coefficient on the interest rate 1.63
Wπ implied preference weight on inflation objective 10.9∗∗

Wy implied preference weight on output gap objective 10.6∗∗

δy implied strength of the lag in output gap objective 0.49∗∗

Note: ∗ - indicates that the parameter is fixed at the given value during estimation; ∗∗ - indicates a parameter
value that is implied by the values of the other parameters.
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Table 7. Representative agent model

True Optimality Restriction (True): Optimality Restriction (True):
(ρ, θ, W ) Value Not Imposed Imposed

sample size sample size
100 250 500 5000 100 250 500 5000

b 0.65 0.702 0.670 0.669 0.650 0.739 0.698 0.688 0.650
(.21) (.17) (.11) (.03) (.23) (.18) (.12) (.03)

σ 2.00 3.34 2.75 2.19 2.04 3.32 2.28 1.98 2.02
(4.7) (2.4) (1.4) (.48) (5.9) (1.9) (1.3) (.45)

γ 0.75 0.812 1.08 0.831 0.761 0.740 0.747 0.741 0.763
(.79) (1.3) (.41) (.13) (.41) (.23) (.14) (.01)

ε 0.50 0.517 0.483 0.492 0.500 0.502 0.500 0.500 0.498
(.10) (.09) (.06) (.02) (.04) (.02) (.01) (.002)

χ 2.00 2.29 1.87 1.90 2.01 2.13 1.99 2.04 1.98
(2.0) (1.2) (.80) (.27) (1.1) (.58) (.36) (.12)

Wy 10.6 – – – – 12.4 10.7 10.7 10.5
(7.8) (2.3) (1.6) (.48)

Wπ 10.9 – – – – 11.5 11.1 10.9 10.8
(3.1) (1.9) (.95) (.12)

θy 0.28 0.281 0.278 0.277 0.277 0.276 0.276 0.277 0.277
(.06) (.04) (.03) (.01) (.06) (.04) (.03) (.01)

θπ 9.28 9.28 9.29 9.28 9.28 9.31 9.29 9.28 9.28
(.11) (.07) (.04) (.02) (.15) (.08) (.05) (.02)

θr 1.63 1.63 1.63 1.63 1.63 1.64 1.64 1.63 1.63
(.02) (.02) (.01) (.003) (.03) (.02) (.01) (.003)

Q 0.013 0.004 0.002 .14e-3 0.083 0.036 0.015 .78e-3
(.01) (.006) (.003) (.17e-3) (.11) (.06) (.04) (.59e-3)

Fraction 0.88 0.99 1.00 1.00 0.88 0.99 1.00 1.00

1. For the case in which the hypothesis of policy optimality is true, the table reports estimates of the
representative agent model described in section 3.3. The parameters have the following interpretation: b
- habit persistence, σ - inverse of the intertemporal elasticity of substitution, γ - partial indexation, ε -
fraction of firms unable to adjust prices, χ - inverse of the wage elasticity of labor supply. {θy, θπ, θr} are
the coefficients of the policy rule and {Wy,Wπ} are the loss function weights.

2. Q is the GMM estimation criterion and Fraction reports the fraction of trials that result in no
outliers.

3. The parenthesis contain standard errors computed across Fraction × 100 trials for each sample
size.
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Table 8. Representative agent model

True Optimality Restriction (False):
(ρ, θ, W ) Value Imposed

sample size
100 250 500 5000

b 0.65 0.749 0.739 0.786 0.768
(.23) (.21) (.17) (.11)

σ 2.00 2.77 3.14 1.34 0.717
(4.4) (5.6) (2.2) (.56)

γ 0.75 0.937 0.987 0.966 0.995
(.51) (.41) (.32) (.05)

ε 0.50 0.396 0.368 0.357 0.342
(.12) (.08) (.07) (.01)

χ 2.00 1.12 1.08 1.20 1.28
(.66) (.48) (.39) (.17)

Wy 10.6 10.2 10.6 7.83 6.82
(7.2) (10.0) (3.7) (.61)

Wπ 10.9 8.49 5.98 5.31 4.31
(9.4) (4.8) (3.7) (.18)

θy 0.50 0.484 0.494 0.495 0.499
(.08) (.05) (.04) (.01)

θπ 1.50 1.53 1.52 1.52 1.52
(.05) (.03) (.02) (.01)

θr 0.50 0.499 0.502 0.499 0.496
(.03) (.02) (.01) (.01)

Q 0.279 0.260 0.259 0.244
(.14) (.09) (.07) (.03)

Fraction 0.91 0.99 1.00 1.00

1. For the case in which the hypothesis of policy optimality is false and imposed, the table reports
estimates of the representative agent model described in section 3.3. The parameters have the following
interpretation: b - habit persistence, σ - inverse of the intertemporal elasticity of substitution, γ - partial
indexation, ε - fraction of firms unable to adjust prices, χ - inverse of the wage elasticity of labor supply.
{θy, θπ, θr} are the coefficients of the policy rule and {Wy,Wπ} are the loss function weights.

2. Q is the GMM estimation criterion and Fraction reports the fraction of trials that result in no
outliers.

3. The parenthesis contain standard errors computed across Fraction × 100 trials for each sample
size.
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Table 9. Rejection frequency of over-identifying restrictions

Optimal Policy Degrees of Sample Test Size
Restriction Freedom Size .25 .10 .05 .025 .01

True 1

100 60 33 26 18 15
Not 250 23 10 6 5 2

Imposed 500 27 12 6 4 2
5000 16 4 1 0 0

True Imposed 4

100 36 25 19 16 16
250 25 14 12 11 9
500 28 9 6 4 4
5000 19 11 6 3 2

False Imposed 4

100 100 99 98 92 88
250 100 100 100 100 100
500 100 100 100 100 100
5000 100 100 100 100 100

Note: For the representative agent model, the table reports the frequency of rejection of the over-identifying
moment restrictions as a function of test size, sample size, whether or not the optimality restriction is true,
and whether or not the optimality restriction is imposed during estimation. The values recorded are given
in percentages and are computed across Fraction × 100 trials for each sample size.

Table 10. Assessment of model fit (1979:III to 2001:IV)

Backward Looking Forward Looking Representative Agent
Policy Restrictions: Policy Restrictions: Policy Restrictions:

Not Imposed Imposed Not Imposed Imposed Not Imposed Imposed
Q 4.3e-19 0.016 0.018 0.094 0.033 1.108

Q× T – – 1.55 8.27 2.94 97.5
p-value – – 0.15 0.02 0.09 0.00
L 1219.1 1215.4 1274.7 1254.7 1266.4 1083.9

Note: Q is the minimized GMM estimation criterion. Q × T is the Hansen (1982) chi-squared test statistic
for the model’s over-identifying restrictions. L = −T

2 ln(|Φ|) corresponds to pseudo log likelihood and is
obtained from the residual-error covariance matrix Φ.

50



Table 11. Structural parameter estimates (1979:III to 2001:IV)

A. Forward-Looking Model
Optimal Policy Restrictions:

Parameter Not Imposed Imposed
λ 0.42 0.08

(12.4) (5.4)
a1 0.77 1.18

(8.9) (.42)
a2 -0.20 -0.30

(3.4) (.15)
b 0.01 0.01

(19.7) (3.4)
α1 0.00 0.02

(2.5e4) (21.2)
α2 0.67 0.71

(.16) (.36)
β 0.04 0.02

(.74) (1.2)
B. Representative Agent Model

Optimal Policy Restrictions:
Parameter Not Imposed Imposed

b 0.87 0.999
(.80) (4.9e3)

σ 4.43 0.47e-4
(1.6) (5.0e3)

γ 0.76 1.00
(.65) (1.1e4)

ε 0.98 0.82
(4.2) (.32)

χ 0.02 0.9e-6
(1.4e3) (4.9e3)

Note: The table reports structural parameter estimates of the forward-looking and representative agent
models described in sections 3.2 and 3.3. The numbers in parenthesis are estimated standard errors.
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Table 12. Policy coefficient estimates (1979:III to 2001:IV)

A. Forward-Looking Model
Optimal Policy Restrictions:

Not Imposed Imposed
Coefficient Estimate Derivative Estimate Derivative
θy1 0.21 -34.4 0.59 -0.9e-3

(.18) (.18)
θπ 0.28 -9.8 0.29 -0.2e-3

(.11) (.09)
θr 0.78 6.3 0.87 -0.5e-4

(.09) (.08)
θy2 -0.26 -32.7 -0.13 -0.8e-3

(.17) (.17)
Wy – – 0.00 –

(2.7e5)
Wr – – 0.00 –

(2.5e5)
B. Representative Agent Model

Optimal Policy Restrictions:
Not Imposed Imposed

Coefficient Estimate Derivative Estimate Derivative
θy -0.05 -4.5e3 -1.48 0.05

(.03) (.96)
θπ 0.31 -7.9e2 6.69 -0.08

(.11) (4.5)
θr 0.80 -17.3 -0.32e-3 -0.28

(.08) (.56)
Wy 123.1 – 20.6 –
Wπ 1.3e4 – 139.0 –

Note: The table reports policy-rule coefficient estimates and loss function weights for the forward-looking
and representative agent models described in sections 3.2 and 3.3. The numbers in parenthesis are estimated
standard errors.
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Table 13. Comparison of GMM and FIML

True Optimality Restriction (True):
(ρ, θ,W ) Value FIML GMM

sample size sample size
100 1000 100 1000

λ 0.15 0.155 0.174 0.181 0.114
(.11) (.08) (.23) (.11)

a1 1.10 0.957 0.977 1.04 1.12
(.16) (.11) (.24) (.11)

a2 -0.30 -0.242 -0.273 -0.307 -0.315
(.09) (.05) (.12) (.04)

b 0.20 0.125 0.116 0.152 0.197
(.08) (.07) (.15) (.07)

α1 0.50 0.453 0.461 0.372 0.448
(.12) (.06) (.32) (.17)

α2 0.45 0.412 0.409 0.749 0.454
(.07) (.05) (2.1) (.03)

β 0.15 0.160 0.167 0.187 0.164
(.08) (.04) (.13) (.04)

Wy 0.10 0.129 0.110 12.4 0.088
(.18) (.07) (101) (.11)

Wr 0.30 0.127 0.135 0.609 0.283
(.17) (.12) (4.9) (.15)

θy1 1.10 1.06 1.07 1.08 1.10
(.15) (.07) (.14) (.04)

θπ 0.63 0.682 0.676 0.649 0.633
(.11) (.06) (.11) (.03)

θr 0.23 0.239 0.242 0.244 0.233
(.06) (.03) (.08) (.02)

θy2 -0.20 -0.189 -0.195 -0.209 -0.206
(.17) (.08) (.18) (.05)

Note: For the case in which the hypothesis of policy optimality is true and imposed, the table reports
estimates of the structural parameters, loss function weights, and policy-rule coefficients for the forward-
looking model described in section 3.2. The estimates in the left panel are obtained from a nested approach
that uses full information maximum likelihood (FIML). The estimates in the right panel are obtained using
GMM. The numbers in parenthesis are estimated standard errors.
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Table 14. Comparison of GMM and FIML

True Optimality Restriction (False):
(ρ, θ, W ) Value FIML GMM

sample size sample size
100 1000 100 1000

λ 0.15 0.151 0.144 0.107 0.045
(.08) (.08) (.18) (.05)

a1 1.10 0.943 0.929 1.09 1.18
(.10) (.10) (.19) (.06)

a2 -0.30 -0.196 -0.187 -0.354 -0.372
(.08) (.10) (.13) (.03)

b 0.20 0.177 0.183 0.181 0.222
(.05) (.05) (.11) (.03)

α1 0.50 0.614 0.629 0.568 0.562
(.07) (.04) (.27) (.08)

α2 0.45 0.461 0.445 0.372 0.347
(.05) (.05) (.10) (.04)

β 0.15 0.057 0.070 0.119 0.108
(.02) (.03) (.06) (.02)

Wy 0.10 0.008 0.007 0.003 0.7e-15
(.3e-2) (.3e-2) (.02) (.5e-14)

Wr 0.30 0.026 0.028 0.001 0.55e-4
(.9e-2) (.03) (.4e-2) (.4e-3)

θy1 0.50 0.262 0.318 0.489 0.479
(.70) (.52) (.11) (.03)

θπ 1.50 -0.144 -0.299 1.47 1.53
(.92) (.70) (.20) (.08)

θr 0.50 0.639 0.649 0.512 0.510
(.30) (.25) (.06) (.02)

θy2 0.00 -0.259 -0.312 0.009 -0.010
(.64) (.53) (.18) (.06)

Note: For the case in which the hypothesis of policy optimality is false and imposed, the table reports
estimates of the structural parameters, loss function weights, and policy-rule coefficients for the forward-
looking model described in section 3.2. The estimates in the left panel are obtained from a nested approach
that uses full information maximum likelihood (FIML). The estimates in the right panel are obtained using
GMM. The numbers in parenthesis are estimated standard errors.
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Table 15. Two step estimation of the forward-looking model

True Two Step Procedure Unified Estimation
(ρ, θ, W ) Value sample size sample size

100 1000 10000 100 1000 10000
λ 0.15 0.207 0.157 0.131 0.181 0.114 0.112

(.25) (.17) (.09) (.23) (.11) (.05)
a1 1.10 1.04 1.09 1.12 1.04 1.12 1.13

(.26) (.17) (.09) (.24) (.11) (.06)
a2 -0.30 -0.279 -0.299 -0.304 -0.307 -0.315 -0.304

(.12) (.06) (.03) (.12) (.04) (.01)
b 0.20 0.184 0.198 0.209 0.152 0.197 0.217

(.16) (.08) (.04) (.15) (.07) (.03)
α1 0.50 0.433 0.472 0.506 0.372 0.448 0.505

(.32) (.16) (.04) (.32) (.17) (.01)
α2 0.45 1.67 0.459 0.449 0.749 0.454 0.450

(12.0) (.04) (.01) (2.1) (.03) (.01)
β 0.15 0.196 0.164 0.149 0.187 0.164 0.149

(.11) (.05) (.01) (.13) (.04) (.01)
Wy 0.10 0.679 0.120 0.081 12.4 0.088 0.073

(2.7) (.25) (.07) (101) (.11) (.06)
Wr 0.30 5.2e20 0.222 0.276 0.609 0.283 0.321

(5.2e21) (.14) (.07) (4.9) (.15) (.04)
θy1 1.10 1.09 1.10 1.10 1.08 1.10 1.10

(.13) (.04) (.01) (.14) (.04) (.01)
θπ 0.63 0.628 0.621 0.628 0.649 0.633 0.628

(.10) (.03) (.01) (.11) (.03) (.01)
θr 0.23 0.238 0.232 0.228 0.244 0.233 0.226

(.08) (.03) (.01) (.08) (.02) (.01)
θy2 -0.20 -0.193 -0.199 -0.198 -0.209 -0.206 -0.196

(.19) (.05) (.01) (.18) (.05) (.02)

Note: The table reports estimates of the structural parameters, policy-rule coefficients, and loss function
weights for the forward-looking model described in section 3.2. The figures in the left panel are obtained
from a two step procedure whereby the normal equations alone are used to estimate structural parameters and
policy-rule coefficients. The policymaker’s first-order conditions are then used in a second step to estimate
the loss function weights holding fixed the first step estimates. The figures in the right panel are obtained
from the unified approach described in section 2. The numbers in parenthesis are standard errors.
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Table 16. Two step estimation of the forward-looking model

Partial Two Step Procedure Unified Estimation
Derivative sample size sample size

100 1000 10000 100 1000 10000
θy1 1.3e24 33.7 0.13e-4 -0.46e-3 -0.37e-5 0.21e-5

(1.3e25) (216) (.6e-3) (.3e-2) (.2e-3) (.6e-5)
θπ 1.9e24 -63.6 -0.8e-3 0.21e-3 -0.28e-4 0.33e-6

(1.9e25) (408) (.8e-3) (.6e-2) (.1e-3) (.3e-5)
θr 3.3e25 -176 -0.13e-2 -0.53e-3 -0.58e-4 -0.35e-5

(3.3e26) (1.1e4) (.2e-2) (.2e-2) (.1e-3) (.9e-5)
θy2 6.1e24 238 -0.17e-3 -0.35e-3 0.68e-5 0.16e-5

(6.1e25) (1.6e4) (.8e-3) (.3e-2) (.2e-3) (.6e-5)

Note: The table reports estimates of the partial derivatives of loss with respect to the policy-rule coefficients
of the forward-looking model described in section 3.2. The derivatives in the left panel are computed on the
basis of a two step procedure. The derivatives in the right panel are computed on the basis of the unified
approach to estimation. The numbers in parenthesis are standard errors.
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