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Abstract

This paper explains US macroeconomic outcomes with an empirical new-Keynesian
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ence of expectations in the model forms a well-known distinction between two modes of
optimization, termed commitment and discretion. The model is estimated separately
under each policy using maximum likelihood over the Volcker-Greenspan-Bernanke pe-
riod. Comparisons of fit reveal that the data favor the specification with discretionary
policy. Estimates of the loss function weights point to an excessive concern for inter-
est rate smoothing in the commitment model but a more balanced concern relative to
inflation and output stability in the discretionary model.
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1 Introduction

In models that embody rational expectations, optimal monetary policies are separated by

a dichotomy known as commitment and discretion. As first pointed out by Kydland and

Prescott (1977), the distinction between them is whether promises made at an earlier time

restrict the policy choices of today. A central bank operating under commitment gives assur-

ances about how policy will be set in all future periods through the design of a contingency

rule for the nominal interest rate. By a contingency rule I mean one involving instrument

settings that are conditional on the state of the economy. The salient aspect of commitment

is that policymakers deliver on past promises by responding to economic conditions in ac-

cordance with the original plan. A central bank practicing discretion, however, is not bound

by some predetermined course of action. Changes in the interest rate are instead the result

of period-by-period reoptimization in which foregoing policy intentions are considered irrel-

evant for current decision making. It follows that measures taken to stabilize the economy

do not constrain future policy management in any credible way.

Ever since the distinction between commitment and discretion was first recognized, count-

less studies have assessed their performance in a variety of macroeconomic models. A con-

sistent theme of this literature is that commitment is the better policy because it generates

lower average inflation in the long run (Barro and Gordon 1983, Rogoff 1985) and a more ef-

ficient response of the economy to random shocks in the short run (Woodford 1999, Clarida,

Gaĺı, and Gertler 1999). The gains from commitment are a direct consequence of the role

that expectations play in shaping economic conditions. A policymaker that is understood

by private agents to always follow through on promised behavior can harness expectations

in a manner that best achieves its objectives. By contrast, exercising pure discretion gives

the policymaker less influence over private-sector beliefs and, as a result, produces outcomes

that are inferior to commitment.
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Given the many advantages of commitment, it is surprising that the empirical literature

has had little to say about which of the two policy concepts describes behavior that is closer

to how central banks manage interest rates in the real world. Numerous papers analyzing

US monetary policy, for example, assume that the Federal Reserve has access to some form

of commitment technology, overlooking the possibility that discretion is more compatible

with the data. Obscuring the issue further are past statements from leading figures in

the policy-making community. In an article summarizing a 2007 speech by Philadelphia

Fed President Charles Plosser, Dotsey (2008, p. 8) asserts, “The current Chairman, Ben

Bernanke, is maintaining their [Volcker and Greenspan’s] example of commitment to low and

stable inflation. The benefits of following a committed plan are now so entrenched in policy-

making circles that most central banks aggressively strive to maintain their credibility.”

Expressing an alternative view, Bernanke and Mishkin (1997, pp. 105-113) remark that

“inflation targeting as it is actually practiced contains a considerable degree of what most

economists would define as policy discretion . . . [and] that a major reason for the success of

the Volcker-Greenspan Fed is that it has employed a policymaking philosophy, or framework,

which is de facto very similar to inflation targeting.” Conflicting anecdotal accounts like these

together with insufficient statistical evidence led McCallum (1999, p. 1489) to conclude “that

neither of these two modes of central bank behavior–rule-like [commitment] or discretionary–

has as yet been firmly established as empirically relevant.”

This paper attempts to bridge the gap in the research on commitment and discretion put

forward by McCallum (1999). It starts from the presumption that the Fed sets interest rates

in a deliberate fashion with specific goals in mind, and then asks whether it is possible to

infer from the data which mode of optimization best explains macroeconomic outcomes in the

US. Of course, discriminating commitment-like from discretionary activity over the sample

can only be accomplished with an econometric procedure that gives voice to the explicit

optimization problem of the policymaker. To that end, this paper borrows from a recent
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literature that estimates the parameters of an aggregate demand and supply model subject to

the constraint that the policy component minimizes the central bank’s loss function (Ozlale

2003, Favero and Rovelli 2003, Dennis 2006). Conditioning estimation on the requirement

that interest rates are chosen optimally, be it under commitment or discretion, enables one

to obtain joint estimates of the structural parameters that characterize private behavior and

the loss function weights that reveal the preferences of monetary policy.

To determine which one is the more “empirically relevant,” I perform joint estimation

separately under commitment and discretion and consider various measures of fit as a way

of assessing congruence between the data and the models. The emphasis on relative model

fit is appropriate because the two policies impose different cross-equation restrictions on the

complete model in equilibrium. Utilizing all pertinent data in a framework that accounts for

the particular restrictions implied by commitment or discretion should help identify which

policy is more likely to have produced the observed outcomes.

The exercise described above is carried out using a simple new-Keynesian model of output

and inflation dynamics. The structural equations form the constraints for the central bank’s

optimization problem. The stabilization goals of policy are represented by a quadratic loss

function that penalizes deviations of inflation and output from target in addition to changes

in the instrument setting. The last argument is often referred to as an interest rate smoothing

objective. Structural parameters and loss function weights are estimated simultaneously,

once under commitment and once under discretion, using a maximum-likelihood procedure

with quarterly US data spanning the chairmanships of Volcker, Greenspan, and Bernanke.

In evaluating the performance of commitment and discretion, I appeal to formal measures

of fit provided through the likelihood function as well as informal comparisons of second

moments. Regarding the latter, I find that discretion does a better job of matching all the

standard deviations calculated from the sample. It also dominates commitment in terms

of the autocorrelations for inflation and the cross correlations between the output gap and
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inflation. For likelihood-based comparisons I employ the Bayesian information criterion

and a related pseudo-posterior odds ratio which summarizes the probability of a model

given the available data. I focus on these statistics rather than the raw log-likelihood values

because the policies examined in this paper are non-nested. It turns out that the information

criterion is considerably higher in the case of discretion, indicating greater fit with the data.

The corresponding pseudo-odds measure reports a conditional probability of less than one

percent for the commitment model compared to ninety-nine percent for discretion.

Another issue concerns the extent to which commitment and discretion yield different

estimates of key parameters, specifically the loss function weights. I find that parameter

estimates are similar across policies with one exception. Under commitment the weight

on interest rate smoothing is significantly larger than the ones on inflation or the output

gap. Under discretion, however, the weight on policy smoothing is estimated to be the

smallest of the three, a more plausible result considering the traditional focus among central

banks on the other two objectives (i.e., the “dual mandate” of the Federal Reserve). The

impulse response functions reveal that this divergence is mainly driven by the propensity for

commitment to increase the volatility of the interest rate which, in turn, forces maximum

likelihood to lift the smoothing penalty in an attempt to reconcile the model with the data.

The fact that empirical evidence favors discretion raises the question of whether the US

economy would have evolved differently had the Fed operated under commitment during the

Volcker-Greenspan-Bernanke era. To shed light on this matter, I simulate the model with

commitment using the parameter estimates obtained under discretion. The shocks used to

generate the counterfactual series are the “true” structural shocks estimated from the dis-

cretionary model. Simulation results make clear that while the interest rate would have been

more volatile under commitment, the paths of inflation and the output gap would have been

close to actual outcomes. As summarized by the loss function, the improvement in macroeco-

nomic stabilization that would have occurred had policy been set under commitment rather
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than discretion is equivalent to a permanent shift in inflation of only 0.37 percentage points.

This paper is not the first to estimate the central bank’s loss function. Early examples are

Ozlale (2003) and Favero and Rovelli (2003), both of which employ versions of the backward-

looking model of Rudebusch and Svensson (1999) and find evidence of a structural break in

the policy weights after Volcker’s appointment to chairman of the Federal Reserve. Dennis

(2006) uses the same model to estimate the Fed’s implicit inflation target and to see whether

the hypothesis of optimal policy can be rejected by the data. This study differs from the early

literature in an important way. My model is forward looking, implying a separation between

commitment and discretion that is entirely absent in the Rudebusch-Svensson model.

There is a literature that estimates policy preferences in a rational expectations frame-

work. Dennis (2004) estimates a new-Keynesian model under discretion and verifies that

a break in the loss function occurred at the time of Volcker’s appointment. Söderström,

Söderlind, and Vredin (2005) examine whether a loss function and a forward-looking model

can be parameterized to match broad moments in the US data. Castelnuovo (2006) shows

that adding expectational terms to a model with discretionary policy reduces the weight on

interest rate smoothing needed to fit the data. Salemi (2006) examines the case of commit-

ment to an optimal Taylor rule and finds that the Fed placed more emphasis on stabilizing

inflation after 1980. Givens and Salemi (2008) employ the same model to test the efficiency

of a GMM strategy for joint estimation. Using Bayesian methods, Ilbas (2010) estimates the

euro-area model of Smets and Wouters (2003) under the assumption of full commitment.

While the papers in this literature deal with a variety of specific issues, they all share one

aspect in common. Each one makes an a priori assumption about the nature of monetary

policy by considering only one of the two possible styles of optimization. I take a step back

and attempt to infer from the data which style is more empirically relevant. To my knowl-

edge, this is the first paper that systematically compares the empirical effects of commitment

and discretion by estimating the two policies side-by-side.
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2 A Small Empirical Model of the US Economy

The model has three components. The first is an IS equation and a Phillips curve that form

the constraints for the central bank’s control problem. The second is a loss function that

summarizes the goals of monetary policy. The third component is a procedure for determin-

ing the path of the interest rate, namely, optimization under commitment or discretion.

2.1 The Policy Constraints

The constraints belong to a family of new-Keynesian models that have been applied exten-

sively in the study of optimal monetary policy. There is a large literature showing that

the behavioral equations comprising these models can be derived from a general equilibrium

framework (Kimball 1995, Yun 1996, Rotemberg and Woodford 1997, McCallum and Nelson

1999). The policy implications of a purely forward-looking class of new-Keynesian models

are examined by Clarida et al (1999). The version used here augments the forward-looking

specification with backward-looking elements designed to capture persistent aspects of the

data (Fuhrer and Moore 1995, Fuhrer 1997, Estrella and Fuhrer 2002).

Denote yt the output gap, the log deviation of real output from potential, and let πt be

the inflation rate between dates t−1 and t. The output gap is determined by an IS equation

yt = ϕEtyt+1 + (1− ϕ)(βyt−1 + (1− β)yt−2)− σ(it − Etπt+1) + uy,t, (1)

where it is the (short-term) nominal interest rate, and Et is an expectations operator con-

ditional on date-t information. When ϕ = 1, (1) corresponds to the log-linearized Euler

equation describing the household’s optimal consumption plan. The parameter σ can be in-

terpreted in this case as the intertemporal elasticity of substitution. The exogenous variable

uy,t is a mean-zero, serially uncorrelated demand shock with constant variance σ2
y .
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The presence of lagged output in the IS equation whenever ϕ < 1 is motivated by em-

pirical concerns. Estrella and Fuhrer (2002) and Fuhrer and Rudebusch (2004) assert that

multiple lags are needed to explain the inertial responses of output observed in the data.

Including lagged terms is also not inherently at odds with economic theory. Fuhrer (2000)

shows that persistence follows directly from first principles when the primitive model exhibits

habit formation in consumption. An IS equation with the same lead-lag structure as (1) can

be derived from a model with external habit formation (Smets and Wouters 2003, Ravn,

Schmitt-Grohé, and Uribe 2006) that depends on on exactly two lags of consumption.1

The inflation rate is governed by an expectations-augmented Phillips curve

πt = αEtπt+1 + (1− α)πt−1 + κyt + uπ,t, (2)

which relates inflation to past and expected future inflation and the current output gap. For

the case of α = 1, (2) resembles the “new Phillips curve” estimated by Gaĺı and Gertler

(1999). The new Phillips curve is consistent with a model of monopolistically competitive

firms that stagger prices according to Calvo (1983). The key cyclical factor affecting pricing

decisions is real marginal cost, which can be shown to vary proportionately with the output

gap (Woodford 2003a, Ch. 3).2 The slope coefficient κ carries information regarding the

frequency of price revisions. Greater nominal rigidity, meaning less frequent revisions, implies

a smaller value of κ. The variable uπ,t is a mean-zero, serially uncorrelated supply shock with

variance σ2
π. It is often interpreted as a “cost-push” shock reflecting variations in marginal

cost unrelated to the output gap (Clarida et al 1999). I allow for nonzero correlation between

supply and demand shocks and denote their covariance σyπ.

To account for the degree of persistence found in the data, the Phillips curve includes a

1A longer working paper available from the author contains an appendix that formally derives this result.
2Gaĺı and Gertler (1999) present evidence showing that synthetic gap variables used in many studies (i.e.,

deterministic trends, capacity utilization, or the Congressional Budget Office estimate of potential GDP) are
poor proxies for the theoretically consistent measure of marginal cost based on the labor income share.
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lagged term whenever α < 1. Fuhrer and Moore (1995), Fuhrer (1997), and Roberts (1997)

argue that without lagged dependence, models produce “jump” dynamics that contradict

evidence suggesting inflation responds sluggishly to economic shocks. The presence of a

backward-looking term can be motivated in theory by assuming that prices charged by non-

optimizing firms are indexed to past inflation. Christiano, Eichenbaum, and Evans (2005)

provide an example of full indexation, whereas Smets and Wouters (2003) allow for partial

indexation. Alternatively, lagged inflation can result from the existence of firms that use a

rule-of-thumb for setting prices that depends on the history of competitors’ prices (Gaĺı and

Gertler 1999). Although it is not generally implied by partial indexation or rule-of-thumb

behavior, restricting the coefficients on lagged and future inflation to sum to one ensures

that (2) is conformable with the view that policy has no long-run effect on output.

2.2 The Loss Function

The central bank sets the path of the nominal interest rate to minimize the loss function

Lt = Et(1− δ)
∞∑
j=0

δj{π2
t+j + λyy

2
t+j + λ∆i(it+j − it+j−1)

2}, (3)

where the discount factor δ ∈ (0, 1) and λy, λ∆i ≥ 0. The first two terms penalize squared

deviations of inflation and output from their respective targets. The inflation target is

assumed to be constant over time and, without loss of generality, is normalized to zero. The

target for output is the potential level.3 The third term penalizes deviations of the interest

rate from its previous level and is viewed as an interest rate smoothing incentive for the

policymaker. The weights λy and λ∆i measure the relative preference for stabilizing output

and the interest rate smoothing argument.4 The weight on inflation is normalized to one.

3The model is equivalent to one that accounts for a nonzero inflation target, but where the variables
appearing in (1) and (2) are written as deviations from target values. See Dennis (2004) for an illustration.

4The phrase “interest rate smoothing” is used to denote an explicit preference for reducing the variance
of the interest rate in first differences. There are others who use the term to mean a reaction function in
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The loss function (3) is an appealing way to model central bank preferences for many

reasons. First, versions of (3) are commonly used to assess the performance of policy rules

(Rudebusch and Svensson 1999, Levin and Williams 2003). As a result, estimates of λy and

λ∆i have a familiar interpretation and are comparable to the literature on optimal monetary

policy. Second, Svensson (1999) argues that the main objectives of a flexible inflation-

targeting central bank can be described with a loss function that stabilizes inflation and a

measure of real activity. This point is particularly relevant because many have argued that

the Federal Reserve under Volcker and Greenspan employed a policy framework that closely

resembles inflation targeting (Bernanke and Mishkin 1997, Goodfriend 2003). Third, Wood-

ford (2002) shows that a loss function similar to (3), but without interest rate smoothing, is

proportional to a quadratic approximation of the representative consumer’s expected utility,

so it provides a natural welfare criterion for ranking alternative policies.

Despite its theoretical appeal, one implication of using a strict, utility-based measure of

loss is that the weights attached to the objectives would depend on the underlying parame-

ters, notably the average frequency of price adjustments. By contrast, this paper regards loss

function weights as free parameters that are to be estimated alongside the coefficients in the

policy constraints. For this reason, and because it also contains an interest rate argument,

the objective function (3) should not be interpreted as an approximation of expected utility.

Finally, including an interest rate smoothing term is empirically compelling because it

helps capture the degree of policy gradualism observed in the data. There are many expla-

nations for why gradualism is desirable. Woodford (2003b) shows that interest rate inertia

is a defining feature of an optimal inflation-targeting rule. Brainard (1967) demonstrates

that interventions should be cautious so as to avoid volatility resulting from misperceptions

of a model with parameter uncertainty. Orphanides (2003) argues that similar caution is

advisable when there is uncertainty regarding the accuracy of incoming data. Lowe and Ellis

which the coefficient on the lagged policy rate is larger than zero (Levin, Wieland, and Williams 1999).
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(1997) point out that such preferences may reflect a concern for financial market stability.

2.3 Optimal Monetary Policy

To compute optimal policies, stack the constraints in companion form as

 Xt+1

ΩEtxt+1

 = A

 Xt

xt

+Bit +

 Γut+1

02×1

 , (4)

where Xt = [uy,t uπ,t yt−1 yt−2 πt−1 it−1]
′ are the predetermined variables, xt = [yt πt]

′ are

the forward-looking variables, and ut+1 = [uy,t+1 uπ,t+1]
′ are the innovations with covariance

matrix Σuu. Structural parameters appear as elements of Ω, A, and B. The methods in

Söderlind (1999) are used to solve for the equilibrium under commitment and discretion.5

The central bank selects an interest rate path to minimize (3) subject to (4). Because the

model is forward looking, it faces constraints that depend on expectations about the current

and future course of monetary policy. In this kind of environment, the ability to credibly

commit to a particular sequence of actions has major implications for the economy.

Under commitment the central bank announces at a specific date a complete, state-

contingent plan for the interest rate that is to be strictly followed in all subsequent periods.

When determining the path of optimal policy, it takes into account how the promise to exe-

cute such a contingency plan impacts private-sector expectations. In other words, the central

bank internalizes the effect of its decisions on future variables in solving the optimization

problem. Commitment thus presumes an ability to fulfill past promises and an understand-

ing on the part of private agents of a willingness to do so regardless of what events transpire.

This strategic interaction produces an optimal equilibrium in which the central bank makes

efficient use of private-sector beliefs to achieve the goals embodied by the loss function.

5Directions on how to construct Ω, A, B, Σuu, and the selector matrix Γ can be found in the working
paper available upon request. It also provides details on the solution method for commitment and discretion.
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It can be shown that the equilibrium law of motion under commitment follows

 Xt+1

ψt+1

 = Mc

 Xt

ψt

+

 Γut+1

02×1

 , (5)

 xt

it

 = Gc

 Xt

ψt

 , (6)

where ψt are the Lagrange multipliers associated with the lower block of (4). Woodford

(2003a, Ch. 7) explains that the multipliers capture the effect of expectations about the

current policy setting that are reflected in the decisions private agents have made in all

previous periods. It follows that actions taken by the central bank at any given time will

depend on the full history of the economy dating back to the policy’s inception.6

Under discretion the central bank is free to adjust policy in response to prevailing con-

ditions, but that response does not have to be the one dictated by some contingency rule

designed earlier. Instead, a discretionary optimizer evaluates the current and prospective

state of the economy and sets policy optimally on the basis of this assessment alone. It

repeats the procedure each time an action is considered without making commitments about

future policy. Because it cannot shape private expectations in the absence of commitment,

future variables are taken as given in the optimization problem. The resulting equilibrium

is only optimal in a constrained sense because the central bank, through sequential reopti-

mization, fails to harness expectations in a way that advances its stabilization goals.

6To see this formally, note that one can solve for ψt in terms of {Xj}t−1
j=0 by inverting the lag polynomial

implied by the lower block of (5). Substituting the resulting expression into (6) gives a policy equation that
describes the interest rate as a function of all current and past realizations of the predetermined variables.
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The equilibrium law of motion under discretion is given by

Xt+1 = MdXt + Γut+1, (7) xt

it

 = GdXt. (8)

An important characteristic of the policy equation embedded in (8), and one that distin-

guishes it from commitment, is that it is purely forward looking rather than history de-

pendent. A forward-looking policy is one in which outcomes are determined solely by the

current and expected future outlook for the state of the economy. In equilibrium the inter-

est rate depends only on today’s predetermined variables since conditional expectations are

computed within the model as linear projections onto the current state.

3 Estimation Strategy

The recursive equilibrium under commitment or discretion takes the form of an empirical

state-space model that can be estimated with maximum likelihood using the Kalman filtering

algorithms described in Hamilton (1994, Ch. 13). The state equation is

ξt+1 = Fξt + Γ̃ut+1, (9)

with ξt ∈ {[X ′
t ψ

′
t]
′, Xt} and F ∈ {Mc, Md}. The observation equation is


yot

πo
t

iot

 = Hξt +


0

0

vi,t

 , (10)
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where {yot , πo
t , i

o
t}Tt=1 denotes the observed output gap, inflation, and the nominal interest

rate, and H ∈ {Gc, Gd}. The variable vi,t is a mean-zero, serially uncorrelated shock to iot .

Its variance σ2
i measures the discrepancy between the optimal policy implied by the model

and the actual interest rate in the sample. With data on three variables, adding vi,t also

helps prevent stochastic singularity (Ingram, Kocherlakota, and Savin 1994).

Structural parameters are estimated with US data over the period 1982:Q1 - 2008:Q4.7

The output gap is the log deviation of real GDP from the Congressional Budget Office

estimate of potential GDP. Inflation is the annualized first difference of the log of the GDP

implicit price deflator. The interest rate is the annual yield on 3-month Treasury bills.

Prior to estimation the inflation and interest rate series are de-meaned so that their

sample averages match the mean values of the corresponding data generated by the model.

Because no intercept terms appear in (1) or (2), the model describes a mean-zero process

for all variables in the system. De-meaning also implies that the target levels for inflation

and the interest rate implicit in the loss function (3) are equal to the averages taken from

the data. This is useful for two reasons. First, the objective is to compare model fit and

estimates of the loss function weights under commitment and discretion rather than obtain

estimates of the Fed’s latent target values.8 Second, de-meaning ensures that the inflation

and interest rate targets are the same for each policy considered during estimation.

The Kalman filter typically begins with a date-0 estimate of the initial state, call it ξ̂1|0,

equal to its long-run mean. The mean value consistent with (9) is zero. This raises a potential

concern for estimation under commitment because ξt contains the Lagrange multipliers tied

to the forward-looking variables. Starting the recursion with ψt = 0 implies that policy

decisions are unconstrained in the initial period, so actions taken in that period do not have

7Following Dennis (2006), the sample begins in 1982:Q1 in order to exclude the period when the Federal
Reserve’s operating procedure focused on targeting the quantity of non-borrowed reserves.

8This approach has been used by Ozlale (2003), Söderström et al (2005), and Castelnuovo (2006). Studies
that estimate the inflation target directly include Favero and Rovelli (2003), Dennis (2004), Dennis (2006),
Ireland (2007), and Fève, Matheron, and Sahuc (2010).
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to confirm private-sector expectations that were formed at dates preceding the sample. As

a result, the central bank will find it optimal to implement the discretionary policy just

once in the first period while promising to behave in a committed fashion thereafter. This

aspect of commitment, known as time inconsistency, is fundamental to the control of forward-

looking systems (Kydland and Prescott 1977), but it is problematic for estimation due to

the arbitrary significance it places on the first observation. By initializing the Kalman filter

with ψt = 0, the model’s interpretation of past events would be one in which the Fed ignored

commitments made prior to 1982:Q1 while committing to a new plan that was optimal from

that specific date onward. This could be viewed as a shortcoming since there is no compelling

historical evidence to indicate that such a regime change took place on that particular date.

In estimating the commitment model, it is better to assume that the Fed has announced

its contingency rule at a point predating the sample. It follows that the economy’s initial

evolution will be consistent with policy actions taken at all dates after the starting period.

This is equivalent to adopting an equilibrium concept that relates closely to what Woodford

(2003a, Ch. 7) calls the “timeless perspective” policy. Such a policy requires that central

bank actions always validate previously-formed expectations even in the initial period. In

practice it is found by substituting out the Lagrange multipliers from the first-order con-

ditions of the policymaker’s control problem, yielding a targeting criterion that must be

satisfied every period (Giannoni and Woodford 2005, Dennis 2010).

By contrast, I allow the multipliers to enter the model, but I initialize the Kalman filter

with nonzero values so that policy does not arbitrarily deviate from the commitment program

at the beginning of the sample. The implementation of commitment during estimation is

more similar to the policy examined in Khan, King, and Wolman (2003). To make the

commitment problem recursive and the resulting policy time consistent, the authors treat all

forward-looking constraints as strictly binding in the initial period. This requires augmenting

the Lagrangian with a set of lagged multipliers, one for each new constraint imposed on the
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optimization problem. The inclusion of auxiliary multipliers makes the first-order conditions

time invariant, implying the same policy behavior at all dates over the planning horizon.

Although some elements of ξt are unobservable, an informed decision about their starting

values can be made using the Kalman filter. The strategy employed here is to estimate the

model in a first stage by setting ξ̂
(1)
1|0 = 0, at which point the Kalman filter is used to

generate a sequence of updated projections of the state {ξ̂(1)t|t }Tt=1. The model is then re-

estimated taking as the initial state the mean value of forecasts computed in the previous

step, that is, ξ̂
(2)
1|0 = (1/T )

T∑
t=1

ξ̂
(1)
t|t . This process is repeated until the initial state equals the

average forecast, or ξ̂
(i+1)
1|0 = ξ̂

(i)
1|0. Convergence always occurred in less than 10 iterations.9

4 Empirical Results

4.1 Maximum-Likelihood Estimates

Table 1 shows point estimates and standard errors of 11 structural parameters.10 The left

panel presents estimates for the commitment case, and the right panel for discretion. The

standard errors are the square roots of the diagonal elements of the inverse Hessian matrix.

There are numerous similarities in the estimates across policies. Looking first at the

covariances, σy and σπ indicate that supply shocks are more than twice as volatile as demand

shocks. Estimates of σi suggest that the disparity between optimal and observed interest

rates are largely invariant to the two modes of central bank behavior.

Turning to the IS and Phillips curves, estimates of ϕ and α indicate that forward and

backward-looking terms are important. The estimate of ϕ is close to one-third under com-

mitment and about 0.37 under discretion. Both are in the neighborhood of values reported

9An alternative strategy adopted by Ilbas (2010) is to partition the sample to include an initialization
period that precedes estimation. She finds that a presample period of 20 quarters is sufficient to eliminate
any effects on parameter estimates of setting the multipliers equal to zero in the initial period.

10The central bank’s discount factor δ is set equal to 0.99 prior to estimation.
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by Fuhrer and Rudebusch (2004) and Lindé (2005). The estimates of α are 0.49 and 0.62,

echoing Roberts (2005) and Kiley (2007). Estimates of κ are small but within the range typ-

ical of the literature. Values of κ near zero are evidence of long duration of price stickiness

or large strategic complementarities with modest price rigidity.11

Regarding the loss function, estimates of λy point to a small preference for output gap

stability. There is some empirical work suggesting that the Fed demonstrates little concern

for the output gap as an independent policy goal. Salemi (2006), for example, finds that the

relative weight on output stabilization is only 0.0012 and not significantly different from zero.

Dennis (2004) reports estimates equal to zero for both the Volcker-Greenspan period and

for the subperiod covering only Greenspan’s chairmanship. Using the Rudebusch-Svensson

model, Dennis (2006) also finds that λy is not significantly different from zero.

To see if the output gap weight is significant in the present model, I conduct likelihood

ratio tests of the null hypotheses that λy = 0. The first two columns of Table 2 display

estimates and log-likelihood values for commitment and discretion when λy is fixed at zero.

Comparing Tables 1 and 2 reveals that the parameter estimates are not greatly affected by the

absence of an output objective. Despite these similarities, the likelihood ratio statistics are

4.18 (p-value is 0.041) in the commitment case and 8.14 (p-value is 0.004) under discretion.

The hypothesis that λy = 0 is therefore rejected by the data under both policies.12 These

findings confirm results in Favero and Rovelli (2003), Ozlale (2003), and Ilbas (2012) showing

that the weight on output volatility is small but statistically significant.

Returning to Table 1, estimates of λ∆i make clear that the preference for interest rate

smoothing is policy dependent. Under commitment λ∆i = 2.56, making interest rate smooth-

ing the leading policy goal followed by inflation and then output stability. This result is

similar to Dennis (2004), Dennis (2006), and Söderström et al (2005) who contend that

11See Woodford (2003a, Ch. 3) for details.
12A Wald test of λy = 0 cannot be rejected under discretion. The appendix contained in the working

paper version provides a detailed explanation for this finding.

16



optimal and historical policy can be reconciled if interest rate smoothing is the dominant

objective in the Fed’s loss function. These authors obtain estimates of λ∆i ranging from 1.11

to 4.52 over the Volcker-Greenspan era. A very different outcome emerges under discretion,

where the estimate of λ∆i = 0.06 places the interest rate objective just below output in the

central bank’s ordering of policy goals. Studies that find evidence of a weak desire for policy

smoothing are Favero and Rovelli (2003), Castelnuovo and Surico (2004), and Ilbas (2012).

To evaluate the significance of interest rate smoothing, I re-estimate the model subject

to constraints on λ∆i that vary according to the policy. In the commitment case I restrict

λ∆i = 1. A test of this restriction is a test of the hypothesis that inflation and interest rate

smoothing receive the same weight in the Fed’s loss function. In the discretion case I set

λ∆i = 0.01. While my intent was to set λ∆i = 0, preliminary estimation failed because the

error covariance matrix of the data became rank-deficient. Setting λ∆i = 0 ensures that

policymakers fully insulate the economy from demand shocks because there is no penalty for

adjusting the interest rate. With supply shocks as the only source of exogenous variation,

the model implies an exact deterministic relationship between the output gap and inflation.13

The final two columns of Table 2 display results for the constraints on λ∆i described

above. Setting λ∆i = 1 under commitment has significant effects on the other parameters.

Estimates of σy, ϕ, and σ, for example, point to larger demand shocks, a diminished role for

expected future output in the IS equation, and a stronger real interest rate channel. Given

the size of the standard errors, however, much uncertainty remains about their true values.

Imposing λ∆i = 1 also lowers maximized log likelihood from −387.77 to −396.56, producing

a likelihood ratio statistic equal to 17.57 (p-value < 0.001). The hypothesis that inflation

and interest rate smoothing receive the same weight is therefore rejected under commitment.

By contrast, fixing λ∆i = 0.01 under discretion has little impact on parameter estimates and

13Due to numerical inaccuracies in computing log likelihood, values of λ∆i close to zero can produce a
covariance matrix that is nearly singular. I found that λ∆i = 0.01 was small enough to form inferences about
the statistical contribution of λ∆i but not so small as to risk encountering stochastic singularity.
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only changes log likelihood from −379.61 to −379.68. The likelihood ratio statistic is 0.16

(p-value is 0.694), so the hypothesis that λ∆i is close to zero cannot be rejected.

4.2 Model Comparison

This section compares the empirical performance of commitment and discretion using two

criteria. First, a group of second moments are calculated from the data and compared to ones

generated by the models to see how well each policy captures key business cycle features.

A second comparison is made by appealing to broad measures of fit provided through the

likelihood function, namely, the Bayesian information criterion and a corresponding posterior

odds measure that reveals the probability of a model given the data.

Table 3 presents the standard deviations of inflation, the output gap, and the interest

rate as implied by the data and the models. The discretionary model does a better job of

accounting for the standard deviations of all three. The volatility of inflation, in particular,

is only slightly larger than the realized volatility in the data. In comparison, the commitment

model significantly overstates inflation and output gap volatility.

Figure 1 plots vector autocorrelation functions.14 Most of the correlations produced by

the models match their counterparts from the data. For example, both policies deliver sub-

stantial output persistence as measured by correlations between current and lagged output

gaps. The half-life of this autocorrelation is about 5 quarters. The models also account for

the positive and declining lead-lag relationship between inflation and the interest rate. Nev-

ertheless, there are at least two areas where discretion generates an improvement in fit. The

first is the degree of inflation persistence. The half-life of these autocorrelations is 2 quarters

under discretion but 5 quarters under commitment. Discretionary policy also improves the

accuracy of the correlations between the output gap and inflation, as it correctly predicts

the sign and magnitude of this relationship at leads and lags of up to one year.

14The autocorrelations for the data are computed from a fourth-order vector autoregression.
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Another way to assess model fit is with the Bayesian information criterion. The BIC is

a consistent model-selection criterion that penalizes likelihood by an amount that increases

with the number of estimated parameters.15 An advantage of the BIC is that it facilitates a

comparison among non-nested models. Optimal commitment and discretion are non-nested

policies since neither one can be obtained by imposing parametric restrictions on the other.

The BIC can also be used to form a pseudo-posterior odds ratio that gives the data-

determined probability of a model. Kiley (2007) explains that in large samples the BIC

approximates the marginal likelihood of a model in which the data, summarized by the like-

lihood function, predominates the Bayesian prior distribution of the parameters. A pseudo-

odds measure is then formed by replacing marginal likelihood with the BIC in the ratio

ρ(j) =
exp(BIC(j))
z∑

h=1

exp(BIC(h))
,

where ρ(j) is the conditional probability of model j among the z different models considered.

While consistent with a Bayesian approach to model selection, the pseudo-odds ratio is

determined solely by the quality of the model’s characterization of the data and not by any

prior information concerning the parameter or model space. This follows from the implicit

use of equal prior model probabilities in the construction of ρ(j) and from the BIC being

invariant to priors over the parameters within each model.16

Table 4 reports log likelihood, the BIC, and the pseudo-posterior odds ratio for the

models under commitment and discretion. The BIC is −413.47 for commitment but−405.31

for discretion. As a result, the pseudo-odds statistic points to a very small conditional

probability of 0.0003 in the commitment model compared to 0.9997 under discretion.

The evidence in favor of discretion leaves open the question of whether Federal Reserve

15The BIC for model j is lnL(j)− (N(j)/2) ln(T ), where lnL(j) is maximized log likelihood, N(j) is the
number of estimated parameters in model j, and T is the sample size.

16Studies that utilize the BIC include Brock, Durlauf, and West (2003), Kiley (2007), and Keen (2009).
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behavior was optimal during the sample period. Comparisons of fit between commitment

and discretion alone are insufficient to answer this question because both models assume that

policy is set optimally, the only difference being in how policymakers manage expectations.

To arrange a valid test of the optimal-policy hypothesis, the comparison group must include

an encompassing model that does not constrain central bank actions to be the outcome of

loss minimization. To that end, I re-estimate (1) and (2) jointly with an unrestricted policy

equation that attaches separate response coefficients to the predetermined state variables.

The discretionary model is a special case of this three-equation system that results from

conditioning estimation on the assumption that response coefficients minimize expected loss.

Relaxing the coefficient restrictions implied by optimal discretion results in

it = 1.8651
(0.5240)

uy,t + 0.1389
(0.1847)

uπ,t + 0.5533
(0.1735)

yt−1 − 0.4836
(0.1609)

yt−2 + 0.2982
(0.0677)

πt−1 + 0.8821
(0.0215)

it−1. (11)

The interest rate equation produced by the discretionary model, on the other hand, is

it = 2.3612
(0.2268)

uy,t + 0.5099
(0.0475)

uπ,t + 0.7088
(0.0709)

yt−1 − 0.6618
(0.0612)

yt−2 + 0.1957
(0.0294)

πt−1 + 0.9017
(0.0101)

it−1, (12)

where standard errors (in parentheses) are found using the delta method. Since the mod-

els are nested, one can test the hypothesis of optimal discretion using the likelihood ratio

statistic. Log likelihood in the model with the unrestricted policy is −371.35 and is reported

in the third row of Table 4. This model has 15 free parameters, 9 structural parameters

plus 6 policy-rule coefficients. The discretionary model, which returns a log likelihood of

−379.61, has the same 9 structural parameters but only 2 free parameters in the loss func-

tion. It follows that optimal policy places 4 restrictions on the coefficients estimated in (11).

The likelihood ratio statistic in this case is 16.51 (p-value < 0.001), so the data reject the

hypothesis that historical outcomes were the result of discretionary optimization.

Pseudo-Bayesian analysis leads to a different conclusion about which policy fits best. The
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BIC for the unrestricted model is −406.40, which is smaller than the value for discretion

but larger than the one for commitment. When all three are considered, the implied pseudo-

posterior odds indicate a conditional probability of 75 percent for the discretionary model

but only 25 percent for the unrestricted model. The probability of commitment is near zero.

The pseudo-odds criterion therefore points to discretion as the preferred model.17

4.3 The Role of Interest Rate Smoothing

Inferences about the role of interest rate smoothing as an independent stabilization goal vary

greatly depending on the policy. Estimates under commitment suggest that it is the most

important objective in the Fed’s loss function, but discretion implies that it is the least. This

section provides intuition for why maximum likelihood produces contradictory findings.

Figure 2 graphs the responses to demand and supply shocks for two versions of the model.

The first version is the estimated model under discretion, and the second takes the same

parameter values (including loss function weights) but assumes a policy of commitment. As

expected, commitment leads to more stable output and inflation dynamics. After a demand

shock both policies generate “hump-shaped” movements in the output gap and inflation,

but the amplitude and persistence are smaller under commitment. Inflation jumps under

both policies following a supply shock, but mean reversion is more gradual under discretion.

It is easy to see how the central bank achieves greater stability by examining the interest

rate profile. By promising to keep rates elevated for an extended time, policymakers reduce

expected future output gaps and inflation and, consequently, dampen their adjustment in

the near term. The only exception is in the response of output to a supply shock, in which

case the period of high interest rates causes a sustained drop in output below potential.18

17The conflicting evidence on model fit provided by the likelihood ratio test and the pseudo-odds criterion
is a consequence of the correction for degrees of freedom accounted for in the BIC.

18The scale of this departure is much smaller than the one induced by a demand shock, so overall volatility
of the output gap is still lower under commitment.
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The problem with the commitment outcome from an empirical perspective is that it

implies a level of interest rate volatility that is at odds with the data. Any data-fitting

exercise will seek parameter values that drive down this volatility. Figure 3 illustrates some

of the tradeoffs faced by maximum likelihood when locating an estimate of λ∆i. The figures

plot standard deviations of the observables for a range of values of λ∆i, holding the other

parameters fixed at their point estimates. The left panel corresponds to the discretionary

model and the right panel to the commitment model. Vertical lines indicate the estimates

of λ∆i, and crosses identify the sample moments reported in the first column of Table 3.

In the case of discretion, raising λ∆i lowers the standard deviation of the interest rate but

has little effect on output and inflation. Most of the reduction occurs at small values of λ∆i.

Under commitment a much bigger weight is needed to reconcile the model with the data.

For small values of λ∆i, the interest rate is twice as volatile as the actual series. Increasing

λ∆i causes this standard deviation to fall but those of the output gap and inflation to rise.

Naturally, maximum likelihood compromises between moments by selecting a value of λ∆i

at which the volatility of all three exceed their sample counterparts by nontrivial amounts.

Figure 4 graphs impulse responses for the models estimated with commitment and discre-

tion. In contrast to Figure 2, changes in dynamics are now driven by the policy specification

as well as variation in all the parameters. As a result of the large estimate of λ∆i, the policy

responses to demand and supply shocks under commitment are much closer to the paths ob-

served under discretion. Greater concern for policy smoothing, however, leads to an increase

in the volatility of output and inflation. For example, the peak effect of a demand shock on

inflation is twice as large for commitment and occurs three quarters later than discretion.

Supply shocks also cause inflation to rise in both models, but the adjustment back to steady

state is now more gradual under commitment. The output gap responses exhibit a similar

pattern of increased volatility when moving from discretion to commitment.
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5 Counterfactual Analysis

Outcomes over the sample period are more consistent with the idea that the Fed set policy

under discretion rather than commitment. Not only does the discretionary model fit better,

inferences about the relative importance of interest rate smoothing accord with traditional

views on the primary goals of monetary policy. These findings motivate the following ques-

tion. Assuming that historical policy was indeed discretionary, how much better off would

outcomes have been had the Fed committed to an optimal rule? This section performs coun-

terfactual simulations to ascertain how the economy might have evolved under commitment.

Figure 5 displays the actual series for inflation, the output gap, and the interest rate

and the paths these variables would have taken had the Fed implemented commitment from

1982:Q1 to 2008:Q4. To produce counterfactual data, the fixed interval Kalman smoother

described by de Jong (1989) is used to estimate the “true” history of shocks implied by the

discretionary model.19 The shocks are then reinserted into the model, holding the parameters

fixed (including loss function weights) but with policy shifted to commitment.20 Preliminary

simulations revealed that full commitment would not have been operational due to frequent

violations of the zero lower bound on the nominal interest rate. To assess the gains from

commitment while respecting the presence of the zero bound, I follow Woodford (2003a, Ch.

6) in approximating the effects of this constraint by amending the loss function to include a

penalty on the variance of the interest rate. By placing a large enough weight on the auxiliary

term, the probability that the nonnegativity constraint ever binds can be made arbitrarily

small. In this exercise I selected a weight on interest rate smoothing just sufficient to ensure

that the counterfactual series is nonnegative at every date over the sample period.21

19The smoothed estimates of the shocks reflect information contained in the full sample.
20In a related exercise Dennis (2005) estimates shocks from a model with a forward-looking Taylor rule. He

then simulates two sets of counterfactual data by feeding the shocks back into the model but with the Taylor
rule replaced by a calibrated loss function. One simulation assumes commitment and the other discretion.

21A value of λi = 0.0024 in the loss function E0(1−δ)
∑∞

t=0 δ
t{π2

t +λyy
2
t +λ∆i(it−it−1)

2+λii
2
t} guarantees

a strictly positive counterfactual sequence of nominal interest rates.
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Figure 5 shows that the interest rate path would have been different under commitment.

Rates would have fallen more quickly in the 1980s, bottoming out at 3.80 percent in 1988:Q1

and staying near historical levels during the 1990s. After peaking at 7.43 percent in 2000:Q4,

the interest rate would have trended down for the rest of the sample. Overall, the volatility

of the simulated path is larger than what actually transpired. The biggest gap between the

counterfactual and observed series is 3.76 percentage points, occurring in 2002:Q4.

Despite very different policy behavior at times, the output gap and inflation paths would

have been strikingly similar to historical outcomes. Inflation would have been smaller before

1995:Q4 under commitment and slightly larger thereafter. The maximum gap between the

two series is only 0.48 percentage points in 1990:Q3. The output gap also would have been

slightly lower in the late 1980s and early 1990s but a bit higher starting in the mid 1990s.

Although useful for historical comparisons, counterfactual simulations do not easily trans-

late into a single measure that quantifies the cumulative losses associated with one policy rel-

ative to another. For this purpose I follow Jensen (2002) and Dennis and Söderström (2006)

and compute the “inflation equivalent,” interpreted as the permanent increase in inflation

from target that in terms of central bank loss is equivalent to moving from commitment to

discretion. The inflation equivalent can be calculated from (3) as πeq =
√
Ld − Lc, where Ld

and Lc are the losses under discretion and commitment, respectively.22 A similar quantity

measured in terms of lost output, an output gap equivalent, is given by yeq = πeq/
√
λy.

Table 5 reports loss under both policies and the inflation and output gap equivalents from

discretion. It also reports the variances of inflation, the output gap, and the interest rate

in first differences and levels. Moving from discretion to commitment while respecting the

zero bound leads to small reductions in output gap and inflation variability. It also lowers

the variance of the interest rate in first differences but increases it in levels. Loss under

22A permanent inflation rate of πeq yields a loss equal to (1− δ)
∑∞

j=0 δ
jπeq2 = πeq2 . Hence, the inflation

equivalent satisfies Lc + πeq2 = Ld.
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discretion is about 6 percent higher than commitment, which is equivalent to a sustained

rise in inflation of 0.37 percentage points or an output gap of 1.17 percentage points.

6 An Optimized Simple Rule

This section estimates a version of the model that specifies policy with a simple Taylor-type

rule rather than commitment or discretion. Following McCallum (1999), I assume that the

simple rule permits feedback from lagged endogenous variables only. Exogenous shocks and

current endogenous variables are excluded on the grounds that neither would be observable

to actual policymakers when setting the interest rate. The class of policy rules considered is

it = θiit−1 + (1− θi)(θππt−1 + θy1yt−1 + θy2yt−2), (13)

where θπ, θy1, θy2, and θi measure the central bank’s response to the lagged state.

In keeping with the theme of optimal policy, the central bank chooses Θ = {θπ, θy1, θy2, θi}

once and for all to minimize (3) subject to (1), (2), and (13). The role of policy thereafter is

to implement the optimized rule in every period. When solving for Θ, it takes into account

how the promise to carry out (13) at all future dates impacts private expectations. Clarida

et al (1999) refer to this type of policy design as “commitment” to an optimal simple rule.23

Before discussing the results, I address an issue concerning estimation of the standard

errors. As noted in Salemi (2006), maximum-likelihood estimation of a model with an optimal

simple rule can produce a likelihood function that is not differentiable near the extremum.

Consequently, methods that rely on approximating the Hessian or the outer product of the

score are incapable of generating meaningful standard errors. An inspection of the likelihood

surface for the present model reveals similar irregularities. Thus, I adopt a Bayesian strategy

to quantify the uncertainty regarding parameter estimates. The procedure involves coupling

23The domain of Θ is restricted to ensure that (13) yields a determinate rational expectations equilibrium.
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the likelihood function with a prior distribution over the parameters using Bayes’ theorem

to form a joint posterior distribution from which the sampling variability can be inferred.

Following Onatski and Williams (2010), I formulate independent uniform prior densities for

the 11 structural parameters. The bounded ranges over which the priors are defined permit

a large area of the parameter space to be explored when constructing the posterior. To

generate draws from the posterior, I employ the Metropolis-Hastings algorithm described in

An and Schorfheide (2007). The draws are used to approximate the posterior mean and 95

percent confidence interval for each parameter.24 The findings are reported in Table 6.

Also in Table 6 are the posterior mode estimates, found by maximizing the sum of log

likelihood and the log-prior distribution. It turns out that the posterior mode is identical to

the estimate one would obtain by maximizing log likelihood over the support of the prior.

The reason is because a uniform prior views all points within the support as equally probable

and those outside as having zero probability, so it does not inform the data in any significant

way. It merely truncates the range of values deemed permissable for maximum likelihood.25

The parameters in the IS equation are the ones most affected by the switch to an optimal

simple rule. For example, demand shocks σy roughly double when moving from commitment

or discretion to a simple rule. This shift is statistically significant as estimates of σy under

the original policies lie outside the 95 percent probability interval. Estimates of σ and ϕ also

change considerably under a simple rule. The estimate of the former rises to 0.05 while the

latter drops to 0.14. These results are similar to ones in Salemi (2006). Using an optimized

simple rule identical to (13), Salemi estimates σ and ϕ to be 0.042 and 0.162, respectively.

As for the loss function, the estimate of λy = 0.10 is almost unchanged from the discretion

case. Draws from the posterior indicate a high degree of precision in this estimate, with the

95 percent confidence interval spanning 0.04 to 0.13. Regarding interest rate smoothing, the

24Details concerning posterior density estimation can be found in the working paper available upon request.
25None of the mode estimates fall near the edges of the prior, so classical and Bayesian inference are the

same in this case. Adding priors serves only to enable estimation of posterior means and confidence intervals.
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estimate of λ∆i = 0.76 falls between the values obtained under commitment and discretion.

The posterior distribution of λ∆i is also concentrated tightly around the mean, suggesting

that the data are highly informative about this parameter.

The central bank’s control problem defines Θ as an implicit function of the structural

parameters and loss function weights. The optimized rule for the estimates in Table 6 is

it = 0.8923it−1 + (1− 0.8923)(3.0510πt−1 + 8.9252yt−1 − 7.9048yt−2). (14)

Reconciling an optimal simple rule with the data evidently requires large countercyclical

responses to inflation and the output gap in the long run but only gradual adjustment of

the interest rate to this desired level in the short run.

I conclude with a brief discussion of model fit. Among the three policies estimated in this

paper, discretion produces the highest log-likelihood value followed by commitment and then

the simple rule. Pseudo-odds ratios point to discretion as the dominant model, assigning near

zero probability to the other two. The relative performance of the simple rule also highlights

the implications for model fit of allowing policy to respond contemporaneously to economic

shocks. A key difference between commitment or discretion and the policy rule (13) is that

the latter restricts the information set to include only lagged state variables. When policy

conditions on an expanded state that accommodates current demand and supply shocks, log

likelihood improves by 8 points in the commitment case and 16 points in the discretion case.

7 Concluding Remarks

This paper reports estimates from a forward-looking model of the US economy in which mon-

etary policy minimizes the central bank’s loss function. The model is estimated separately

under commitment and discretion using maximum likelihood over the Volcker-Greenspan-
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Bernanke era. The goal is to judge which mode of optimal policy fits the data best and to see

whether the two procedures generate statistically different parameter estimates. The results

point to broad similarities in the estimates across policies with one major exception. The

weight on interest rate smoothing in the loss function is large under commitment but small

under discretion. This result can be traced to the fact that commitment increases interest

rate volatility, and maximum likelihood tries to compensate by lifting the weight on policy

smoothing. Measures of fit based on the likelihood function indicate that discretionary policy

provides a superior description of the joint time-series properties of the data.

The foregoing empirical analysis uses a strictly binary framework in which policy choices

are either full commitment or discretion. In future work it might be more realistic to think

about Fed behavior as lying between these two extremes. Schaumburg and Tambalotti (2007)

develop a modeling device, which they call “quasi-commitment,” that makes it possible to

analyze a continuum of policies between commitment and discretion that differ in degree of

credibility. Policymakers are understood by the public to renege on a commitment plan every

period with some fixed probability. Outcomes converge to full commitment as this proba-

bility approaches zero and to discretion as it approaches one. Within a quasi-commitment

framework, it should be possible to estimate simultaneously the weights in the central bank’s

loss function and the exogenous probability that identifies its measure of credibility.
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Table 1

Maximum-Likelihood Estimates

Parameter Commitment Discretion

Estimate Std. Error Estimate Std. Error

σy 0.2482 0.0207 0.2065 0.0145

σπ 0.5745 0.0395 0.6108 0.0505

σyπ −0.0381 0.0145 −0.0352 0.0162

σi 0.9274 0.0639 0.9403 0.0637

λy 0.1351 0.0596 0.0987 0.1892

λ∆i 2.5581 0.5900 0.0579 0.0930

ϕ 0.3286 0.0102 0.3747 0.0071

β 1.5153 0.0101 1.4483 0.0083

σ 0.0089 0.0035 0.0002 0.0001

α 0.4927 0.0074 0.6162 0.0314

κ 0.0045 0.0016 0.0047 0.0090

lnL −387.7724 −379.6072

Notes: The table reports maximum-likelihood estimates of the following model where lnL denotes the value of log likelihood:

yt = ϕEtyt+1 + (1− ϕ)(βyt−1 + (1− β)yt−2)− σ(it − Etπt+1) + uy,t,

πt = αEtπt+1 + (1− α)πt−1 + κyt + uπ,t,

Lt = Et(1− δ)
∞∑
j=0

δj{π2
t+j + λyy2t+j + λ∆i(it+j − it+j−1)

2}.
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Table 2

Maximum-Likelihood Estimates of Restricted Models

Parameter Commitment Discretion Commitment Discretion

σy 0.2607
(0.0292)

0.2024
(0.0137)

0.4509
(0.2485)

0.2063
(0.0144)

σπ 0.5764
(0.0403)

0.6210
(0.0511)

0.5806
(0.0406)

0.6112
(0.0508)

σyπ −0.0423
(0.0157)

−0.0431
(0.0140)

−0.0664
(0.0484)

−0.0308
(0.0129)

σi 0.9423
(0.0654)

0.9582
(0.0654)

1.0149
(0.0708)

0.9385
(0.0633)

λy 0a 0a 0.0562
(0.0380)

0.0146
(0.0068)

λ∆i 2.8536
(0.8119)

0.1767
(0.0741)

1a 0.01a

ϕ 0.3099
(0.0194)

0.3690
(0.0066)

0.1475
(0.2581)

0.3730
(0.0059)

β 1.5250
(0.0201)

1.4425
(0.0077)

1.6135
(0.1434)

1.4597
(0.0036)

σ 0.0067
(0.0038)

0.0002
(0.0001)

0.0561
(0.0516)

0.0003
(0.0001)

α 0.5010
(0.0068)

0.5906
(0.0267)

0.5106
(0.0076)

0.6250
(0.0261)

κ 0.0049
(0.0016)

0.0111
(0.0055)

0.0053
(0.0015)

0.0007
(0.0003)

lnL −389.8648 −383.6755 −396.5589 −379.6847

Notes: The table reports restricted maximum-likelihood estimates of the following model:

yt = ϕEtyt+1 + (1− ϕ)(βyt−1 + (1− β)yt−2)− σ(it − Etπt+1) + uy,t,

πt = αEtπt+1 + (1− α)πt−1 + κyt + uπ,t,

Lt = Et(1− δ)
∞∑
j=0

δj{π2
t+j + λyy2t+j + λ∆i(it+j − it+j−1)

2}.

a is a value that is set prior to estimation and lnL is log likelihood. Numbers in parentheses are standard errors.
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Table 3

Standard Deviations

Variable Data Commitment Discretion

Inflation 1.0822 2.2140 1.2298

Output Gap 2.2506 4.5958 2.7194

Nominal Interest Rate 2.4144 3.7923 3.0239

Notes: Standard deviations are multiplied by 100.
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Table 4

Model Comparison

Model Log likelihood BIC Pseudo-odds Pseudo-odds

(z = 2) (z = 3)

Commitment −387.7724 −413.4729 0.0003 0.0002

Discretion −379.6072 −405.3078 0.9997 0.7481

Unrestricted −371.3507 −406.3969 — 0.2517

Notes:BIC is the Bayesian information criterion. The pseudo-odds statistic measures the data-determined probability of a model
j and is defined as ρ(j) = exp(BIC(j))/

∑z
h=1 exp(BIC(h)), where z is the number of distinct models under consideration.
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Table 5

Counterfactual Losses under Discretion

Policy Var(π) Var(y) Var(∆i) Var(i) Loss πeq yeq

Discretion 1.5124 7.3952 2.3420 9.1442 2.2148 0.3665 1.1665

Commitment 1.4045 7.2419 1.8775 14.5813 2.0805 — —

Notes: The table reports variances of inflation π, the output gap y, and the interest rate in differences ∆i and levels i as well as
loss under discretion and commitment. The loss differential is also reported as an inflation (output gap) equivalent πeq (yeq).
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Table 6

Estimation Results for an Optimal Simple Rule

Parameter Prior Dist. Post. Mean 95% Prob. Int. Post. Mode Commitment Discretion

σy [0.10, 0.90] 0.4922 [0.39, 0.58] 0.4289 0.2482
(0.0207)

0.2065
(0.0145)

σπ [0.10, 0.90] 0.5818 [0.51, 0.67] 0.5639 0.5745
(0.0395)

0.6108
(0.0505)

σyπ [−0.20, 0.00] −0.0723 [−0.12,−0.02] −0.0675 −0.0381
(0.0145)

−0.0352
(0.0162)

σi [0.50, 1.50] 1.0628 [0.92, 1.24] 1.0249 0.9274
(0.0639)

0.9403
(0.0637)

λy [0.01, 0.20] 0.0835 [0.04, 0.13] 0.0961 0.1351
(0.0596)

0.0987
(0.1892)

λ∆i [0.25, 1.25] 0.7447 [0.70, 0.78] 0.7602 2.5581
(0.5900)

0.0579
(0.0930)

ϕ [0.01, 0.40] 0.0739 [0.01, 0.19] 0.1395 0.3286
(0.0102)

0.3747
(0.0071)

β [1.30, 1.70] 1.5402 [1.39, 1.67] 1.5029 1.5153
(0.0101)

1.4483
(0.0083)

σ [0.01, 0.10] 0.0613 [0.04, 0.09] 0.0460 0.0089
(0.0035)

0.0002
(0.0001)

α [0.30, 0.70] 0.5178 [0.51, 0.53] 0.5109 0.4927
(0.0074)

0.6162
(0.0314)

κ [0.001, 0.010] 0.0023 [0.001, 0.004] 0.0016 0.0045
(0.0016)

0.0047
(0.0090)

lnL −395.6592 −387.7724 −379.6072

BIC −421.3598 −413.4729 −405.3078

ρ 0.0000 0.0003 0.9997

Notes: The table reports estimation results for the following model:

yt = ϕEtyt+1 + (1− ϕ)(βyt−1 + (1− β)yt−2)− σ(it − Etπt+1) + uy,t,

πt = αEtπt+1 + (1− α)πt−1 + κyt + uπ,t,

it = θiit−1 + (1− θi)(θππt−1 + θy1yt−1 + θy2yt−2),

Lt = Et(1− δ)
∞∑
j=0

δj{π2
t+j + λyy2t+j + λ∆i(it+j − it+j−1)

2},

where {θi, θπ , θy1, θy2} = argminLt. The first column displays the support of the uniform prior for each parameter.
The next two columns report the posterior means and 95 percent probability intervals generated from the Metropolis-Hastings
algorithm described in An and Schorfheide (2007). The fourth column presents maximum-likelihood estimates, which are equal
to the posterior mode estimates under independent uniform priors. The last two columns reproduce the estimates under full
commitment and discretion, where numbers in parentheses are Hessian-based standard errors. lnL denotes log likelihood and
BIC is the Bayesian information criterion. The pseudo-odds statistic measures the data-determined probability of a model j
and is defined as ρ(j) = exp(BIC(j))/

∑z
h=1 exp(BIC(h)), where z is the number of distinct models under consideration.
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Fig. 1. The figure shows vector autocorrelation functions for the output gap y, inflation π, and the nominal interest rate i
implied by US data (solid line), the commitment model (dashed line), and the discretionary model (dotted line).
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Fig. 2. The figure displays impulse responses of the output gap y, inflation π, and the nominal interest rate i to a demand
shock uy,t (left column) and a supply shock uπ,t (right column). Response functions are graphed for the estimated model under
discretion (solid line) and the commitment model using the point estimates obtained under discretion (dashed line). Each panel
traces out the effect of a one-standard-deviation shock, and the values are interpreted as percent deviations from steady state.
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Fig. 3. The figure displays standard deviations of inflation (solid line), the output gap (dashed line), and the nominal interest
rate (dotted line) as the weight on interest-rate smoothing λ∆i varies from its estimated value, holding the other parameters
fixed at their point estimates. The left panel graphs the functions implied by the estimated discretion model. The right panel
corresponds to the commitment model. Vertical lines indicate the estimated values of λ∆i and crosses identify sample moments.
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Fig. 4. The figure displays impulse responses of the output gap y, inflation π, and the nominal interest rate i to a demand shock
uy,t (left column) and a supply shock uπ,t (right column). Response functions are graphed for the estimated discretionary model
(solid line) and the estimated commitment model (dotted line). Each panel traces out the effect of a one-standard-deviation
shock, and the values are interpreted as percent deviations from steady state.
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Fig. 5. The figure plots the actual series as implied by the estimated discretionary model (solid lines) and the counterfactual
series generated under commitment (dotted lines) with the zero lower-bound restriction.
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