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1 Introduction

Habit formation in consumption is a prominent feature of the microeconomic apparatus that

underlies modern new-Keynesian models of the business cycle (e.g., Fuhrer, 2000; Christiano,

Eichenbaum, and Evans, 2005; Smets and Wouters, 2007). A standard assumption in this

class of models is that households derive utility by consuming an aggregate good that is

comprised of numerous differentiated products. A basic question then is whether habits

develop at the level of the aggregate good or at the level of individual good varieties. Until

recently this literature has only considered cases where agents become addicted to the overall

consumption bundle despite empirical evidence suggesting that shoppers form habits over

product categories and even specific brands (e.g., Chintagunta, Kyriazidou, and Perktold,

2001). Motivated by these findings, Ravn, Schmitt-Grohé, and Uribe (2006) propose a “deep

habits” model in which habitual consumption develops exclusively on a good-by-good basis.

In such an environment the demand function for each product will depend on past sales,

causing equilibrium mark-ups of price over marginal cost to be time-varying and to move

countercyclically with output.1 The authors go on to show that by inducing countercyclical

mark-up behavior, deep habits can account for the observed procyclical responses of both

consumption and real wages to various demand shocks. In contrast, a traditional habit-

persistence model employing the exact same calibration fails to capture this dynamic.

The comparisons between deep and aggregate habit formation made in Ravn et al. (2006)

take place in an economy with purely flexible product prices. As a result, the model is limited

in its ability to match the broad correlations among nominal and real variables that define

postwar US business cycles. New-Keynesian models, on the other hand, are better suited

to this task (e.g., Ireland, 2003). A relevant question then is whether incorporating deep

habits into these models could improve their fit with the data when compared to standard

versions that assume habits thrive only at the composite good level. I try to answer that

question here by estimating a small-scale DSGE model with sticky product prices, which

I then use as a laboratory for testing the implications of the two habit concepts described

above. The main goal is to examine whether aggregate habits are sufficient to explain the

observed correlations in an economy where nominal frictions play a leading role, or whether

deep habits can account for additional features of the data, thereby strengthening model fit.

To assess the merits of deep vs. aggregate habit formation, the paper begins by presenting

a simple new-Keynesian model whose preference structure nests both types as special cases.

1Both observations are consistent with the predominant empirical findings on the cyclical properties of
mark-ups in US data (e.g., Bils, 1987; Rotemberg and Woodford, 1999).
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The advantage of employing a nested utility function is that it enables one to consider several

different modeling choices in the course of estimation. These include cases in which only

the composite good is habit forming, only the individual goods are habit forming, both are

addictive with possibly different habit intensities, or neither. Estimating a model that can

accommodate any one of these arrangements makes it easier to infer from the data which

mode of habit persistence is the more empirically compelling.

The paper proceeds by estimating three versions of the model using a maximum-likelihood

procedure with quarterly US data on consumption, inflation, and a nominal interest rate.

Each estimation imposes different restrictions on the utility function. One leaves the prefer-

ence parameters unconstrained, allowing the data to ascertain the strength of habit formation

at both levels. The second permits deep habit formation but sets aggregate habit intensity

equal to zero prior to estimation. The third restricts deep habit intensity to zero while leav-

ing the aggregate parameter free. Likelihood ratio tests then provide a basis for comparing

the fit of the two constrained models to an unrestricted alternative that allows both types of

consumption habits to coexist. Estimates reveal that the data favor a model featuring a large

amount of persistence at the level of individual goods along with a modest amount at the

composite good level. When examined side-by-side, however, it is clear that deep habits do a

better job of explaining the broad correlations embodied by the likelihood function. In fact,

the exclusion restriction on aggregate habits is not easily rejected at standard significance

levels, but it is rejected with a high degree of confidence when imposed on deep habits.

Likelihood comparisons, while useful for assessing model fit, are uninformative about the

precise features of the data captured by deep habits but not by aggregate habits. Further

complicating this analysis is the fact that point estimates change from one model variant

to the next, making it difficult to distinguish the empirical effects of habit formation from

the effects of changes in the parameter values. To isolate the role of the habit mechanism

from these other elements, I compare simulations of the restricted model containing only

deep habits to those from an identically-parameterized model with deep habits replaced

by aggregate habits. Simulations reveal that deep habits are superior mainly because they

impart greater persistence on the inflation process. Correlations between current and lagged

inflation, for example, decay more slowly when habits are deeply rooted and are much closer

to the sample correlations. This dynamic is also reflected in the model’s impulse response

functions, which show inflation reacting more sluggishly to both demand and supply shocks.

To gain insight into the persistence mechanism, it is helpful to examine how the shadow

value of sales for individual producers responds to economic shocks. This quantity, repre-
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sented by the lagrange multiplier on the firm’s product demand function, turns out to be

much less volatile under deep habits. Smaller fluctuations in the marginal value of sales

motivate firms to smooth out their price adjustments over a longer horizon, imparting more

inertia on the dynamics of aggregate inflation. This characteristic of the deep habits model

derives from price-elasticity and intertemporal effects found by Ravn et al. (2006) to be

the source of countercyclical mark-ups under flexible prices. With deep habits an increase

in aggregate spending boosts the demand elasticity for each product, causing equilibrium

mark-ups to fall. At the same time, firms recognize that consumption habits make future de-

mand conditions dependent on current sales, creating an (intertemporal) incentive to squeeze

prices further in an effort to expand future profits. Of course, most new-Keynesian models

generate countercyclical mark-ups by virtue of nominal stickiness alone. Nevertheless, these

two effects, which vanish under aggregate habits, help discourage the swift price increases

that would otherwise follow expansionary demand shocks as well as the abrupt declines that

typically follow shocks to total factor productivity.

1.1 Related Studies

This paper contributes to a recent literature, originated by Ravn, Schmitt-Grohé, and Uribe

(2004), that studies the empirical implications of incorporating deep habits into sticky-price

models of the business cycle. Using generalized method of moments, Lubik and Teo (2011)

estimate a new-Keynesian Phillips curve derived from an optimizing model featuring deep

habit preferences. In their setup the forcing process for inflation depends on expected future

consumption growth in addition to real marginal cost. The authors construct a synthetic

time series for this process using real unit labor cost along with conditional expectations

obtained from a reduced-form forecasting model for consumption. A central finding is that

deep habits improve the fit of the Phillips curve while making it less reliant on backward-

looking components such as indexation or rule-of-thumb pricing.

One of the drawbacks of the single-equation estimation strategy employed by Lubik and

Teo (2011) is that it does not account for all of the general equilibrium restrictions on the

joint dynamics of the endogenous variables. By contrast, the maximum-likelihood approach

adopted here imposes all of these restrictions by estimating simultaneously the full system

of equilibrium difference equations contained in the model. In efforts to compare the fit

of deep habits to aggregate habits, a systems-based approach is useful because the two

specifications have different testable implications for the co-movement of the endogenous

variables. Despite these methodological differences, it is encouraging that the studies report
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some common findings, most notably regarding point estimates of the deep habit parameter,

improvements in model fit, and lagged indexation as a trivial source of inflation persistence.

Ravn, Schmitt-Grohé, Uribe, and Uuskula (2010) is an example of a recent study that

utilizes a complete model for estimation. A key difference from this paper, however, is

that parameters are chosen by minimizing a weighted discrepancy between the dynamic

responses to a monetary policy shock implied by the model and the empirical ones obtained

from a structural vector autoregression. Statistical inference is therefore based on limited

information contained in the impulse responses to a single identified shock rather than full

information provided by the likelihood function. The authors show that deep habits can

resolve the so-called “price puzzle” (the brief deflation that follows an expansionary monetary

shock) as well as generate the observed persistence in the inflation response without relying

on implausible levels of exogenous nominal rigidity. An alternative model featuring aggregate

habits instead of deep habits is shown to perform worse in these specific areas.

2 The Model

The economy is inhabited by identical households and a continuum of imperfectly competitive

firms that produce differentiated goods and face costs of changing prices. What sets it apart

from the textbook new-Keynesian model is a preference structure that allows consumption

habits to be formed at the level of differentiated goods as well as the composite final good.

2.1 Households

Households are indexed by j ∈ [0, 1]. Each household j values consumption of differentiated

goods cj,t(i), with distinct varieties indexed by i ∈ [0, 1], but experiences disutility from sup-

plying labor hj,t. Following Ravn et al. (2006), preferences feature external habit formation

on a good-by-good basis. This so-called “deep habits” specification assumes that household

j’s period utility function depends on a composite good xj,t given by

xj,t =

[∫ 1

0

(
cj,t(i)− bdct−1(i)

)1−1/η
di

]1/(1−1/η)

, (1)

where ct−1(i) ≡
∫ 1

0
cj,t−1(i)dj denotes the population mean consumption of good i at date

t − 1 and η > 1 is the substitution elasticity across (habit-adjusted) varieties. Parameter

bd ∈ [0, 1) measures the intensity of habit formation in consumption of each variety.
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Before making intertemporal decisions, household j minimizes total consumption expen-

diture,
∫ 1

0
Pt(i)cj,t(i)di, subject to the aggregation constraint (1). Pt(i) is the nominal price

of good i at date t. In solving its minimization problem, the household treats ct−1(i) as

exogenous.2 The first-order conditions imply demand functions for each variety of the form

cj,t(i) =

(
Pt(i)

Pt

)−η

xj,t + bdct−1(i),

where Pt ≡
[∫ 1

0
Pt(i)

1−ηdi
]1/(1−η)

is the unit price of the final good. The demand for good i

has the usual property of being negatively related to its relative price Pt(i)/Pt and positively

related to consumption of the final good xj,t. Note, however, that deep habits give rise to an

additional component that depends positively on past aggregate sales ct−1(i) when bd > 0.

As shown in the next section, firms internalize this feature when setting prices. In particular,

they recognize that consumption habits make future demand conditions a function of the

current sales volume. This complementarity creates an incentive to moderate price increases

in order to expand the customer base and hence procure higher profits in subsequent periods.

Household j maximizes the expected lifetime utility function

Vj,0 = E0

∞∑
t=0

βtat

[
log(xj,t − baxt−1)−

h1+χ
j,t

1 + χ

]
, (2)

where E0 is a date-0 conditional expectations operator, β ∈ (0, 1) is a subjective discount

factor, and 1/χ > 0 is the Frisch elasticity of labor supply. Preference shocks at follow the

autoregressive process log at = ρa log at−1 + εa,t, with ρa ∈ (−1, 1) and εa,t ∼ i.i.d. N(0, σ2
a).

Movements in at shift the marginal utility of final consumption as well as the marginal disu-

tility of labor. In equilibrium these disturbances perturb the consumption Euler equation.

In addition to differentiated goods cj,t(i), the preferences described in (2) permit house-

holds to form habits directly over the composite good xj,t. Specifically, household j values

quasi differences between xj,t and xt−1 ≡
∫ 1

0
xj,t−1dj, the population average consumption of

the composite good at date t − 1. Following Abel (1990), xt−1 is perceived as an external

reference variable in that its evolution is taken as exogenous during optimization. Parameter

ba ∈ [0, 1) measures the strength of external habits in consumption of the final good.3

2Nakamura and Steinsson (2011) provide an example in which households internalize past consumption
demand for each variety when allocating expenditure on individual goods.

3This specification, often referred to as “catching up with the Joneses,” is different from internal habit
formation in which households value consumption relative to their own past consumption. Dennis (2009)
studies the empirical consequences of internal vs. external habit formation from a new-Keynesian perspective.
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The utility function in (2) is appealing because it nests both forms of habit persistence

examined in this paper as special cases. When ba = 0 preferences become time separable

in xj,t, and the model collapses to a strictly deep habits specification. Alternatively, setting

bd = 0 causes the deep habits mechanism in (1) to vanish. In this case habits develop only at

the level of the final good now given by
[∫ 1

0
cj,t(i)

1−1/ηdi
]1/(1−1/η)

, which is just a standard

Dixit-Stiglitz aggregator commonly used in models with imperfectly competitive markets.

Henceforth, I refer to this restricted version as the “aggregate habits” specification.

In each period t ≥ 0, household j supplies labor to firms at a competitive nominal wage

rate Wt. It also has access to riskless one-period bonds Bj,t that pay a gross nominal interest

rate Rt at date t+1. Together with bond wealth and labor income, household j receives an

aliquot share of profits from ownership of firms, Φj,t. The flow budget constraint is

Ptxj,t +ϖt +Bj,t ≤ Rt−1Bj,t−1 +Wthj,t + Φj,t, (3)

where ϖt ≡ bd
∫ 1

0
Pt(i)ct−1(i)di.

4 Sequences {xj,t, hj,t, Bj,t}∞t=0 are chosen to maximize Vj,0

subject to (3) and a borrowing limit that rules out Ponzi schemes. In evaluating its optimal

sequence problem, the household takes as given {Pt, ϖt, Rt,Wt,Φj,t}∞t=0 as well as the initial

composite good x−1 and bond holdings Bj,−1. The first-order necessary conditions imply

hχ
j,t (xj,t − baxt−1) = wt (4)

and

1 = βEt
Rt

πt+1

at+1 (xj,t − baxt−1)

at (xj,t+1 − baxt)
, (5)

where wt ≡ Wt/Pt is the real wage and πt ≡ Pt/Pt−1 is the gross inflation rate.

2.2 Firms

Consumption goods are produced by a continuum of monopolistically competitive firms.

Each variety i is associated with a distinct firm and is manufactured using household labor

according to the production function yt(i) = ztht(i), where yt(i) denotes the output of firm i

and ht(i) is its labor input. Aggregate technology shocks zt follow the autoregressive process

log zt = (1− ρz) log z + ρz log zt−1 + εz,t, with ρz ∈ [0, 1), z > 0, and εz,t ∼ i.i.d. N(0, σ2
z).

Firm i selects its price Pt(i) to maximize the present discounted value of nominal profits.

4Household j’s efforts to minimize the period-by-period cost of assembling each unit of xj,t implies that,

at the optimum,
∫ 1

0
Pt(i)cj,t(i)di = Ptxj,t + bd

∫ 1

0
Pt(i)ct−1(i)di.
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Constraining the firm’s price-setting decision is the market demand curve for good i

ct(i) =

(
Pt(i)

Pt

)−η

xt + bdct−1(i), (6)

obtained by integrating cj,t(i) over all j ∈ [0, 1] households. Here it is understood that firm

i will always meet this demand at the posted price, implying that ztht(i) ≥ ct(i) for all

t ≥ 0. Following Rotemberg (1982), firms also face a quadratic cost of adjusting nominal

prices of the form (α/2) (Pt(i)/πPt−1(i)− 1)2 yt, where α ≥ 0 measures the degree of price

rigidity. Adjustment costs are expressed in units of aggregate output, yt ≡
∫ 1

0
yt(i)di, and

are incurred whenever growth in Pt(i) deviates from the long-run mean inflation rate π.

The Lagrangian of firm i’s problem can be written as

L = E0

∞∑
t=0

q0,t

{
Pt(i)ct(i)−Wtht(i)− Pt

α

2

(
Pt(i)

πPt−1(i)
− 1

)2

yt

+Ptγt(i) [ztht(i)− ct(i)] + Ptνt(i)

[(
Pt(i)

Pt

)−η

xt + bdct−1(i)− ct(i)

]}
,

where q0,t is a stochastic discount factor determining the date-0 value of additional profits in

period t.5 In maximizing L, firm i takes as given {q0,t,Wt, Pt, yt, zt, xt}∞t=0 as well as initial

sales c−1(i) and price P−1(i). First-order conditions with respect to {ht(i), ct(i), Pt(i)}∞t=0 are

wt = γt(i)zt, (7)

νt(i) =
Pt(i)

Pt

− γt(i) + bdEt
q0,t+1

q0,t
πt+1νt+1(i), (8)

ct(i) = νt(i)η

(
Pt(i)

Pt

)−η−1

xt + α

(
Pt(i)

πPt−1(i)
− 1

)
Ptyt

πPt−1(i)

− αEt
q0,t+1

q0,t
πt+1

(
Pt+1(i)

πPt(i)
− 1

)
Pt+1(i)Ptyt+1

πPt(i)2
. (9)

The multiplier γt(i) in (7) corresponds to real marginal cost. With a linear technology,

marginal cost is invariant across firms and equal to the ratio of the real wage to the marginal

product of labor. The multiplier νt(i) in (8) can be interpreted as the shadow value of selling

an additional unit of good i in the current period. It is the sum of two parts; the first is

5In equilibrium the stochastic discount factor satisfies q0,tPt = βtat/(xt − baxt−1).
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the short-run profit from the sale, Pt(i)/Pt − γt(i), and the second is the discounted value

of all future profits that the sale is expected to generate, bdEt
q0,t+1

q0,t
πt+1νt+1(i).

6 Equation

(9) describes conditions that must be satisfied by the firm’s optimal price. Specifically, the

marginal revenue from a unit increase in relative price, ct(i), must equal the marginal loss

resulting from the fall in demand, νt(i)η
(

Pt(i)
Pt

)−η−1

xt, plus an adjustment cost when α > 0.

2.3 Monetary Policy

Following Ravn et al. (2010), the monetary authority sets Rt according to a Taylor rule

log(Rt/R) = θr log(Rt−1/R) + (1− θr) [θπ log(πt/π) + θy log(yt/y)] + εr,t,

where θπ and θy capture the long-run policy response to fluctuations in gross inflation and

aggregate output. Parameter θr ∈ [0, 1) measures the degree of interest rate smoothing.7 Pos-

itive constants R, π, and y denote the steady-state values of the nominal interest rate, infla-

tion, and output. The purely random element of policy is summarized by εr,t ∼ i.i.d.N(0, σ2
r).

2.4 Competitive Equilibrium

I consider a symmetric competitive equilibrium in which all households make identical con-

sumption and labor supply decisions and all firms charge the same price. It follows that

the subscript j and the function argument i can be dropped from variables appearing in the

household’s and firm’s optimality conditions.

Equilibrium requires that both labor and product markets clear at prevailing prices. This

is accomplished in the labor market by imposing∫ 1

0

hj,tdj =

∫ 1

0

ht(i)di ≡ ht

for t ≥ 0. In product markets, output of the final good must be allocated to total consump-

tion expenditure and to resource costs originating from the adjustment of prices:

yt = ct +
α

2

(πt

π
− 1

)2

yt.

6Due to habit formation, selling a unit of good i in the current period raises sales by bd units in the
following period, the present discounted value of which equals bdEt

q0,t+1

q0,t
πt+1νt+1(i).

7The policy coefficients {θr, θπ, θy} are jointly restricted to guarantee a locally unique rational expec-
tations equilibrium. See Zubairy (2012) for a discussion of how deep habits modify the local determinacy
conditions of an otherwise standard new-Keynesian model.
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3 Econometric Strategy

In the absence of shocks, the equilibrium conditions of the model imply that all prices and

quantities converge to a unique steady state. I log-linearize each equation around this fixed

point and compute a rational expectations equilibrium using methods developed by Klein

(2000). The solution has a state-space representation given by

st = Πst−1 +Ωεt, (10)

ft = Ust, (11)

where vector st contains both exogenous and endogenous state variables, εt holds the guas-

sian innovations, and vector ft contains the model’s forward-looking variables. Elements of

matrices Π, Ω, and U are functions of the structural parameters governing the preferences

and technologies of households, firms, and the monetary authority.

As shown by Kim (2000), models with solutions of the form (10) and (11) can be estimated

via maximum likelihood using standard Kalman filtering techniques (e.g., Harvey, 1989).

With data on the observable variables, the Kalman filter compiles a history of innovations

{εt}Tt=1 that are used to evaluate sample log likelihood. Since these innovations depend on

Π, Ω, and U, structural parameters may be estimated by maximizing log likelihood.

I estimate the model with quarterly US data on consumption, inflation, and a nominal

interest rate. The sample period is 1965:Q3 to 2012:Q1. Consumption is real personal con-

sumption expenditures (PCE) divided by the civilian noninstitutional population. Inflation

is the first-differenced log of the PCE (chain-type) price index. The interest rate is the log of

the gross yield on three-month Treasury bills. To harmonize the data with the model, I de-

mean the inflation and interest rate series prior to estimation. Consumption data, however,

exhibits a secular trend. To induce stationarity I regress the log of per capita consumption

against a constant and a linear time trend. Least squares residuals are used for estimation.

4 Estimation Results

Of the model’s fourteen parameters, three are held fixed prior to estimation. The discount

factor β is set to 0.9965, which equals the ratio of the sample means of inflation and the

nominal interest rate. The substitution elasticity η across (habit-adjusted) goods is set equal

to 6. In the absence of deep habits (bd = 0), this value implies an average mark-up of 20

percent and is consistent with the evidence in Basu and Fernald (1997). When deep habits

9



are present, the steady-state mark-up is given by µ ≡
[
1− (1/η)

(
1−βbd

1−bd

)]−1

and depends

on both η and bd. Point estimates of bd discussed below put µ in the 21-22 percent range.

Preliminary attempts to estimate the adjustment cost parameter α returned values that

point to extreme levels of price rigidity. As a result, I follow Monacelli (2009) by calibrating

α so that the model is consistent with a price-change frequency of one year in a Calvo-Yun

framework. Letting 1 − ϕ denote the Calvo reset probability, ϕ = 0.75 implies an average

contract duration of (1 − ϕ)−1 = 4 quarters (e.g., Woodford, 2003). To obtain α, I set the

key slope coefficient in the linearized version of (9), which turns out to be (η − 1)/α, equal

to the Phillips curve slope in the standard Calvo-Yun model given by (1 − ϕ)(1 − βϕ)/ϕ.

This restriction implies that the adjustment cost term satisfies α = ϕ(η− 1)/(1−ϕ)(1−βϕ)

for fixed values of η, β, and ϕ. Price contracts lasting one year are common in the new-

Keynesian literature and are compatible with recent micro-level evidence on the volatility of

consumer goods prices (e.g., Nakamura and Steinsson, 2008).

Table 1 displays maximum-likelihood estimates and standard errors for the nested habits

model as well as the two restricted models that consider deep and aggregate habits separately.

Standard errors correspond to the square roots of the diagonals of the inverse Hessian matrix.

Looking first at the nested model, point estimates of ba and bd reveal that the data favor

a specification in which consumption habits are strongest at the level of individual goods.

The estimate of bd is 0.94 and is close to the value of 0.85 reported by Lubik and Teo (2011)

and Ravn et al. (2010). The estimate of ba, on the other hand, is only 0.61, which is near the

range of estimates in Christiano et al. (2005) (0.65) and Smets and Wouters (2007) (0.71).

Finally, notice that the standard error associated with bd is an order of magnitude smaller

than the one for ba, indicating far more precision in the estimate of deep habits.8

Concerning the Taylor rule parameters, the estimate of θr is high (0.90), reflecting the

Federal Reserve’s penchant for adjusting the interest rate gradually in response to shocks.

The estimate of θπ, measuring the long-run policy response to inflation, is 1.54. This value

ensures that policy is stabilizing and satisfies the Taylor principle over the sample period.

By contrast, policy does not appear to have reacted strongly to fluctuations in output. The

estimate of θy is low (0.07) and not significantly different from zero. Other studies that

report small estimates of θy in US data include Ireland (2003) and Ravn et al. (2010).

Turning next to the shocks, estimates of σa, σz, and σr indicate that innovations to

preference shocks are more volatile than technology and monetary policy innovations. More-

8Using nondurable consumption data in a model that also accounts for investment dynamics and govern-
ment spending, Ravn et al. (2004) obtain estimates of bd spanning 0.93 to 0.95.
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over, estimates of ρa (−0.30) and ρz (0.93) suggest that while technology shocks are highly

persistent, preference shocks are not persistent and may even be negatively autocorrelated.9

The lack of persistence and high volatility surrounding preference shocks is somewhat

atypical of most DSGE models. To provide some intuition for why it appears in the present

model, I consider a log-linear approximation of the consumption Euler equation (5) given by

ĉt =

(
ba + bd + babd

1 + ba + bd

)
ĉt−1 −

(
babd

1 + ba + bd

)
ĉt−2 +

(
1

1 + ba + bd

)
Etĉt+1 (12)

−
(
(1− ba)(1− bd)

1 + ba + bd

)(
R̂t − Etπ̂t+1 − (1− ρa)ât

)
,

where X̂t ≡ logXt − logX denotes the log deviation of a variable Xt from steady state X.

It is clear that positive values of ba and bd lower the impact effect of a given realization of

ât on consumption ĉt. Explaining the historical variation in US consumption data therefore

requires larger innovations to the preference shock, all else equal, than would be necessary in

the absence of deep or aggregate habit formation (see below). The autocorrelation coefficient

ρa plays a similar role in the transmission of preference shocks, but its estimate is also likely

being influenced by the presence of two consumption lags in the Euler equation. When either

habit type is dropped from the utility function (bd = 0 or ba = 0), the second lag vanishes,

forcing the model to rely more heavily on persistent shocks rather than its own internal

structure to replicate the time-series properties of aggregate consumption (see below).

Estimates of the deep habits model are obtained by maximizing log likelihood under

the restriction ba = 0. The contribution that aggregate habits make to the overall fit of

the model can be tested by comparing these results to the nested specification. Imposing

ba = 0 evidently has little effect on the majority of parameter estimates, most notably the

degree of deep habits bd, which is nearly unchanged at 0.94. Obvious exceptions are the

persistence and volatility of preference shocks. For reasons discussed above, the estimate

of σa falls by over half (0.12) while the estimate of ρa becomes significantly positive (0.50).

Omitting aggregate habits also lowers maximized log likelihood from 2380.41 to 2377.65. To

see whether this decline is statistically significant, I perform a likelihood ratio test of the null

hypothesis that ba = 0. The p-value of the relevant chi-square statistic is 0.0189, implying

that the exclusion restriction is rejected by the data at the 5% level but not the 1% level.

To evaluate the contribution of deep habits to model fit, I also report estimates from

the aggregate habits model obtained by restricting bd = 0. Eliminating deep habits does

9The chi-square statistic from a likelihood ratio test of the hypothesis ρa = 0 has a p-value of 0.0084.
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not greatly affect estimates of ba (0.65), but it has a big impact on how one interprets the

preference shocks. Estimates of ρa (0.95) and σa (0.02) suggest that they are highly persistent

but not significantly more volatile than technology shocks over the sample period. Along

with these parameter changes, the maximized value of log likelihood drops all the way to

2343.57. The p-value for the likelihood ratio test of bd = 0 is less than 0.0001. Thus compared

to previous results concerning aggregate habit formation, the new-Keynesian model suffers

a greater loss of explanatory power when deep habits are excluded.

5 Examining the Role of Deep Habits

Although evidence based on the likelihood function points to deep habits as the more em-

pirically compelling, it is unclear precisely which aspects of the data are responsible for the

improvement in model fit. To answer this question and gain further insight into the role of

consumption habits per se, I compare simulations of the deep habits model estimated in the

previous section to those from an aggregate habits model that uses the exact same parame-

ter values (i.e., ba = bd = 0.9414). The ensuing differences in model dynamics are therefore

driven entirely by the habit mechanism and not by variation in the parameter estimates.

5.1 Volatilities and Correlations

In Table 2 and Fig. 1 I report standard deviations and autocorrelation functions for the ob-

servable variables–detrended consumption, inflation, and the nominal interest rate–generated

from the deep habits model as well as an identically-parameterized aggregate habits model.

To see which one has superior business cycle properties, I also report the corresponding set

of moments observed in the US data. Following Fuhrer (2000), moments from the data are

computed on the basis of an unrestricted, fourth-order vector autoregression.

The deep habits model does a better job of accounting for the joint volatility of ĉt, π̂t, and

R̂t. For each variable the model-implied standard deviation is well-within the 90% confidence

interval around the VAR-based estimate, so differences between the two are insignificant at

the 10% level. This is not true of the aggregate habits model, which tends to understate con-

sumption volatility but greatly overstate inflation volatility. In fact, the standard deviation

of π̂t under aggregate habits is more than double the value obtained under deep habits.

Fig. 1 reveals that deep habits are also better at replicating some of the key dynamic

interactions reflected in the autocorrelation functions. Nowhere is this more obvious than in

the own correlation of inflation. The VAR results show inflation to be highly persistent with
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a correlation “half-life” of about seven quarters. Under deep habits the correlation between

inflation and its own lag still exceeds 0.50 after one year and stays positive for up to three

years. By contrast, there is almost no inflation persistence under aggregate habits. The

correlation half-life is less than one quarter and turns slightly negative after just one year.

Another feature of the correlogram best captured by deep habits is the persistence in

the own correlation of the nominal interest rate and its cross correlation with inflation at

both leads and lags. In each case the autocorrelations are generally inside the VAR’s 90%

confidence bands for the deep habits model but not for the aggregate habits model. These

findings, however, may simply reflect the policymaker’s fixed response in the Taylor rule to

a more persistent inflation process under deep habits. The other correlations reported in the

figure are similar for both models and are broadly consistent with the data.10

5.2 Impulse Response Analysis

What factors drive the persistence and volatility of inflation observed under deep habits? To

shed light on the key mechanisms, I now characterize quantitatively the dynamic responses

of the economy to demand and supply shocks. Specifically, in Figs. 2 and 3 I report impulse

responses to a one-standard-deviation increase in the preference shock at and the technology

shock zt (both in logs). The path of the estimated deep habits model is depicted with a solid

line and, for comparison, the aggregate habits model is shown with a dotted line.

Absent from this discussion are the responses to a policy innovation εr,t. Because they

originate on the demand side of the model, monetary shocks produce short-run dynamics that

are qualitatively similar to preference shocks. Moreover, Ravn et al. (2010) only consider

monetary shocks in their analysis of deep habits. Emphasizing preference and technology

shocks therefore shifts the orientation of this paper towards findings that have not received as

much attention in the literature. Finally, variance decompositions of the two models reported

in Table 3 indicate that policy shocks have a small impact on ĉt, π̂t, and R̂t. Preference and

technology shocks, by contrast, account for over 90% of the variability in most cases.

Consider the effects of a preference shock in Fig. 2. A positive innovation to at lifts con-

sumption in both models because it increases households’ marginal utility of habit-adjusted

10Confidence intervals for the autocovariance functions are obtained using Monte Carlo methods as follows.
First, I take the joint distribution of the VAR coefficient estimates and the residual covariance matrix to
be asymptotically normal with mean given by the sample estimates and covariance given by the sample
covariance matrix of those estimates. Second, I draw 10,000 random vectors from this multivariate normal
distribution and compute the corresponding autocovariance functions for each draw. Third, I rank the
autocovariances for each variable pair and for each lag in descending order. The 90% confidence intervals
are bounded by the 5th and 95th percentiles of the ordered autocovariances.
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consumption. Meanwhile, the shock also boosts the demand for labor as firms try to satisfy

the temporary consumption boom. This raises equilibrium work hours and the real wage

along a fixed labor supply curve since preference shocks do not affect households’ marginal

rate of substitution in (4). With productivity zt unchanged, the wage increase implies an

equal percentage increase in real marginal cost given by the lagrange multiplier γt in (7).

The adjustment paths described so far are similar for the two habit specifications. Where

they depart is in the response of the shadow value of sales. Recall that this quantity,

represented by the multiplier νt on the consumer demand function, measures the value to

the firm of selling an extra unit in the current period. According to the figure, it falls sharply

on impact under aggregate habits–by about 53%–compared to only 5% under deep habits.

The manner in which consumption habits affect the shadow value of sales can be seen

more clearly by expressing νt in terms of the present value of expected future per-unit profits.

Iterating (8) forward and imposing the various symmetric equilibrium conditions yields

νt = Et

∞∑
j=0

(
βbd

)j λt+j

λt

(1− γt+j) , (13)

where λt is the date-t marginal utility of habit-adjusted consumption. Two observations are

worth noting. First, when bd is close to one, νt depends heavily on expectations of per-unit

profits in the distant future. Because the shocks are transitory, long-run profit forecasts do

not deviate much from the steady state. Consequently, even large changes in marginal cost

over the short run have only a small percentage effect on the entire present value expression.

Second, when bd = 0, as is true of the aggregate habits model, (13) collapses to νt = 1− γt.

The value of selling an additional unit in this case is just the current-period marginal profit

since the sale is not expected to induce future sales when deep habits are absent. It follows

that large shifts in real marginal cost will have a comparable percentage effect on νt.

Returning to Fig. 1, movements in the value of sales strongly influence how firms react to

the increase in marginal cost. With aggregate habits, the large drop in νt motivates firms to

pass these cost increases on to consumers via higher prices. As a result, annualized inflation

surges to 9.4% on impact and recedes quickly as the effects on marginal cost subside. With

deep habits, the small decline in νt encourages firms to shield their customers from higher

costs by keeping prices low. In this case inflation actually falls slightly below the steady

state in the initial period but rises gently to a peak of 4.3% three quarters later.

The reason why the shadow value of sales is more rigid and thus inflation less volatile

and more persistent under deep habits is partly due to the intertemporal effect identified
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by Ravn et al. (2006). This effect emerges because firms recognize that current sales affect

future consumption demand if bd > 0. When faced with rising demand and cost conditions,

firms have a powerful incentive to broaden their market share by holding down prices. The

resulting growth in the habit stock enables firms to smooth out price increases over several

quarters rather than front-load all of them as seen in the aggregate habits model.

The other channel through which deep habits affect inflation dynamics is the price-

elasticity effect. As explained by Ravn et al. (2006), shocks that lift aggregate spending

increase the relative size of the price-elastic component of the firm’s demand schedule (6)

when bd > 0. This raises the short-run price elasticity of demand, which in a symmetric

equilibrium can be expressed as ϵt ≡ η(1−bdct−1/ct).
11 Following an expansionary preference

shock, firms will therefore seek to limit any price increase in an effort to preserve market

share. The same incentives do not exist in the aggregate habits model. When bd = 0 the

demand elasticity is constant and equal to η regardless of the spending level. Fig. 1 affirms

this result. Under deep habits ϵt climbs by 10.7% on impact. This drives mark-ups even

lower and bolsters the inertia already present in inflation from the intertemporal effect.

The joint impact that these two channels have on the inflation process is also evident

in the optimal price-setting condition (9) when expressed in log-linear form. The relevant

steady-state approximation produces a forward-looking Phillips curve

π̂t = βEtπ̂t+1 + (1/α) (ĉt − ν̂t − x̂t) . (14)

Solving (14) forward and recognizing that x̂t =
(
ĉt − bdĉt−1

)
/(1− bd) gives

π̂t = −(1/α)Et

∞∑
j=0

βj

ν̂t+j +
(
bd/(1− bd)

)
(ĉt+j − ĉt+j−1)︸ ︷︷ ︸

ϵ̂t+j

 , (15)

revealing inflation to be solely a function of the expected future paths of consumption growth

and the shadow value of sales. As described above, the intertemporal effect of deep habits

is best captured by variation in νt and the price-elasticity effect by changes in the short-

run demand elasticity ϵt. A log-linear approximation of the demand elasticity yields ϵ̂t =(
bd/(1− bd)

)
(ĉt − ĉt−1), which is precisely the second term in the forward solution for π̂t.

This way of dissecting inflation makes clear how both mechanisms impart inertia. Following

a preference shock, intertemporal effects choke off inflation by preventing a collapse in the

11The price elasticity of demand for good i is ϵt(i) ≡ − (Pt(i)/Pt)
ct(i)

∂ct(i)
∂(Pt(i)/Pt)

= η
(
ct(i)− bdct−1(i)

)
/ct(i).
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shadow value of sales. Price-elasticity effects also stamp out inflation to the extent that

positive consumption growth in (15) offsets any contemporaneous declines in νt.

Fig. 3 displays the equilibrium responses to a technology shock. A positive innovation to

zt, all else constant, relaxes the lifetime budget constraint and allows consumption to increase

through a wealth effect channel. Meanwhile, the real interest rate (not shown) temporarily

rises in both models because monetary policy reduces the nominal rate by less than the fall

in expected inflation. Higher real rates, in turn, mitigate some of the expansionary effects

on consumption in the short run. Facing only modest growth in consumption demand, the

increase in productivity enables firms to roll back their demand for labor, pushing hours of

work, real wages and marginal cost lower in periods immediately after the shock.12

For reasons made apparent by (13), the decline in real marginal cost has disparate effects

on the shadow value of sales in the two models considered. According to the figure, the

impact-period rise in νt under aggregate habits is 12.7% compared to 2.5% under deep

habits. It follows that firms are not as eager to slash prices when habits are deeply rooted.

Indeed, quantitative results show that annualized inflation in this case only drops to 2.3%

(down from 3.9%), whereas it plunges to 1.1% under aggregate habits. Thus contrary to a

preference shock, here intertemporal effects help to discourage the large price cuts (instead

of the price hikes) that would otherwise follow an increase in total factor productivity.

Price elasticity effects also influence the path of inflation. Unlike the response depicted

in Fig. 2, however, these effects tend to undermine rather than reinforce the intertempo-

ral effects described above. Because the technology shock leads to a gradual increase in

consumption, short-run demand elasticities in the deep habits model rise and then fall in a

hump-shaped pattern. During periods with high demand elasticities, firms have an incentive

to lower their prices in an effort to capture a bigger share of the market. This actually

intensifies the downward pressure on inflation and counteracts the upward pull that is being

exerted by the intertemporal effects. The same result can be seen in (15). Technology shocks,

because they increase both νt and ϵt, amplify the disinflation experienced under deep habits.

Yet despite the extra push given by the price-elasticity effect in this case, the intertemporal

effect is evidently strong enough to prevent inflation from falling as much as it would if deep

habits were absent from the model altogether.

12In sticky-price models, work hours will contract after an increase in total factor productivity whenever
monetary policy does not fully accommodate the rise in aggregate spending (e.g., Gaĺı and Rabanal, 2004).
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6 Additional Sources of Persistence

Most of the improvements in fit associated with the deep habits model come from its ability to

capture the persistence observed in US inflation. One could conclude then that the aggregate

habits model is deficient simply because it has no internal source of inflation persistence other

than serial correlation inherited from preference and technology shocks. But this raises the

possibility that the case for deep habits may not be as compelling if they were evaluated

within the context of larger model that includes plausible alternative sources of persistence.

To help guard against this possibility, I modify the original setup by incorporating two

ad hoc elements capable of generating some persistence irrespective of deep habits. The

first one borrows from Ireland (2007) by placing a backward-looking term in the adjustment

cost function. Specifically, firms are assumed to face quadratic adjustment costs of the

form (α/2)
[
Pt(i)/

(
(πϱ

t−1π
1−ϱPt−1(i)

)
− 1

]2
yt, where ϱ ∈ [0, 1] measures the degree to which

lagged inflation serves as a reference value for price setting. If ϱ = 1 firms incur costs only

to the extent that growth in Pt(i) deviates from πt−1. If ϱ = 0 adjustment costs reduce

to the benchmark case where steady-state inflation is the reference point. A log-linear

approximation of the optimal pricing condition produces an augmented Phillips curve

(π̂t − ϱπ̂t−1) = βEt (π̂t+1 − ϱπ̂t) + (1/α) (ĉt − ν̂t − x̂t) . (16)

Inflation now has two sources of persistence. One is the persistence inherited from the forcing

variable, ĉt− ν̂t− x̂t, and the other is the “built-in” persistence imparted by lagged inflation

when ϱ > 0. The second modification allows for serial correlation in the policy shock by

modeling εr,t as an AR(1) process with autoregressive coefficient ρr ∈ [0, 1). Due to sticky

prices, greater persistence in the nominal interest rate translates into greater persistence in

consumption. This in turn strengthens inflation persistence via the forcing process in (16).

I now re-estimate the nested habits model along with the two restricted versions while

accounting for the additional features described above. Because the maximum-likelihood

procedure is free to select values for ϱ and ρr, the estimates should help determine whether

the benchmark results falsely attribute inflation persistence to deep habits when at least some

of that persistence is actually the result of backward-looking components in the Phillips curve

or serial correlation in the policy shocks. The new estimates are reported in Table 4.

The changes made in this section have little effect on inferences of the nested model or the

deep habits model. In fact, none of the parameter estimates for either model are significantly

different from the original estimates in Table 1. I also find no evidence of lagged inflation
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in the Phillips curve. Estimates of ϱ lie up against the zero lower bound, indicating that

the data prefer to have persistence derive from deep habits rather than backward-looking

frictions in price setting. There is some evidence of serial correlation in the policy shocks.

Estimates of ρr range from 0.21 to 0.25 and are significantly different from zero.13

Estimates of the aggregate habits model do not exhibit the same level of stability. Im-

posing bd = 0 drives up the estimate of ρr to 0.66 but pushes down estimates of θr and θπ to

0.31 and 1.17, signaling that the data favor a policy rule with less interest rate smoothing,

a weaker response to inflation, and more serial correlation in the shock. Inferences about

habit formation are also affected. The estimate of ba is now 0.79, almost 22% higher than

the corresponding value in Table 1. Despite these parameter changes, the aggregate habits

model still does not attribute any persistence to lagged inflation in the Phillips curve. The

point estimate of ϱ is near zero and statistically insignificant.

7 Conclusion

This paper reports estimates from a small-scale new-Keynesian model with habit formation

in consumption. Central to the model is a utility function that nests both aggregate and

deep consumption habits as special cases. Maximum likelihood estimates reveal that the

data prefer an arrangement in which habits over differentiated products are stronger than

habits over the aggregate finished good. Although separate likelihood ratio tests formally

reject the hypothesis that either type should be excluded (at the 5% level), results show that

the deterioration in model fit is far greater when deep habits are missing.

I trace this conclusion to the ability of deep habits to shape the time series properties of

inflation in a manner consistent with US data. As argued in the paper, product-level habit

formation motivates firms to smooth out their price adjustments over time. This feature

derives from well-known intertemporal and price-elasticity effects that coalesce with nominal

frictions to produce a model capable of imparting substantial inertia on inflation dynamics.

Simulations indicate that deep habits are indeed critical for matching the kind of volatility

and persistence observed in the sample. The same behavior is evident in the impulse response

functions, which show inflation reacting sluggishly to preference and technology shocks when

deep habits are preserved but swiftly and less persistent when replaced by aggregate habits.

13The chi-square statistic from a likelihood ratio test of the hypothesis that ρr = 0 has a p-value of 0.0010
in the nested habits model and 0.0035 in the deep habits model.
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Appendix

A. Symmetric Equilibrium Conditions

at/(xt − baxt−1) = λt (A.1)

hχ
t (xt − baxt−1) = wt (A.2)

λt = βRtEt(λt+1/πt+1) (A.3)

xt = ct − bdct−1 (A.4)

wt = γtzt (A.5)

νt = 1− γt + βbdEt(λt+1/λt)νt+1 (A.6)

ct = ηνtxt + α(πt/π − 1)(πt/π)yt − αβEt(λt+1/λt)(πt+1/π − 1)(πt+1/π)yt+1 (A.7)

yt = ztht (A.8)

yt = ct + (α/2)(πt/π − 1)2yt (A.9)

log(Rt/R) = θr log(Rt−1/R) + (1− θr) [θπ log(πt/π) + θy log(yt/y)] + εr,t (A.10)

log at = ρa log at−1 + εa,t (A.11)

log zt = (1− ρz) log z + ρz log zt−1 + εz,t (A.12)

B. Log-linear Approximation

ât − (x̂t − bax̂t−1) /(1− ba) = λ̂t (B.1)

χĥt + (x̂t − bax̂t−1) /(1− ba) = ŵt (B.2)

λ̂t = R̂t + Etλ̂t+1 − Etπ̂t+1 (B.3)

x̂t =
(
ĉt − bdĉt−1

)
/(1− bd) (B.4)

ŵt = γ̂t + ẑt (B.5)

ν̂t = −
(
η(1− bd)− (1− βbd)

)
γ̂t + βbdEt

(
λ̂t+1 − λ̂t + ν̂t+1

)
(B.6)

π̂t = βEtπ̂t+1 + (1/α) (ĉt − ν̂t − x̂t) (B.7)

ŷt = ẑt + ĥt (B.8)

ŷt = ĉt (B.9)

R̂t = θrR̂t−1 + (1− θr) [θππ̂t + θyŷt] + εr,t (B.10)

ât = ρaât−1 + εa,t (B.11)

ẑt = ρz ẑt−1 + εz,t (B.12)
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Table 1

Parameter Estimates (1965:Q3 - 2012:Q1)

Model Parameter Nested Deep Aggregate

Parameter Description Habits Habits Habits

σa preference shock 0.3006
(0.0575)

0.1229
(0.0170)

0.0224
(0.0065)

σz technology shock 0.0114
(0.0026)

0.0162
(0.0059)

0.0164
(0.0034)

σr policy shock 0.0017
(0.0001)

0.0017
(0.0001)

0.0020
(0.0001)

ρa AR preference shock −0.2999
(0.0922)

0.5012
(0.0719)

0.9478
(0.0233)

ρz AR technology shock 0.9333
(0.0295)

0.8983
(0.0449)

0.9965
(0.0048)

θr interest rate smoothing 0.9026
(0.0183)

0.9073
(0.0188)

0.7956
(0.0261)

θπ inflation response 1.5406
(0.3031)

1.4814
(0.3331)

1.4687
(0.1825)

θy output response 0.0685
(0.0427)

0.0894
(0.0486)

−0.0155
(0.0131)

ba aggregate habit 0.6111
(0.0546)

0 0.6461
(0.0674)

bd deep habit 0.9438
(0.0069)

0.9414
(0.0077)

0

χ Frisch elasticity 2.0135
(0.6603)

1.0655
(0.6334)

1.5749
(0.7689)

α price adjustment cost 59.3778 59.3778 59.3778

β discount factor 0.9965 0.9965 0.9965

η substitution elasticity 6 6 6

µ markup 1.2142
(0.0019)

1.2136
(0.0019)

1.2000
(0.0000)

lnL log likelihood 2380.4089 2377.6548 2343.5735

p-value likelihood ratio test − 0.0189 0.0000

Notes: The table reports maximum-likelihood estimates of the nested model, the deep habits model (ba = 0), and the aggregate
habits model (bd = 0). Standard errors are in parentheses. Italicized numbers denote values that are imposed prior to estimation.
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Table 2

Standard Deviations

Model SD(ĉt) SD(π̂t) SD(R̂t)

Deep Habits 0.0320 0.0075 0.0070

Aggregate Habits 0.0275 0.0172 0.0075

VAR(4) 0.0373 [0.0300, 0.0781] 0.0066 [0.0056, 0.0127] 0.0075 [0.0059, 0.0174]

Notes: Simulations of the deep and aggregate habits models use the same parameter values. Numbers in squared brackets
correspond to 90% confidence intervals for the standard deviations implied by an unconstrained VAR(4) on ĉt, π̂t, and R̂t.

Table 3

Variance Decompositions

Deep Habits Aggregate Habits

ĉt π̂t R̂t ĉt π̂t R̂t

preference shock 59.56 11.29 24.36 46.78 65.52 39.36

technology shock 33.98 85.70 54.76 51.47 28.88 54.84

policy shock 6.46 3.01 20.89 1.75 5.61 5.80

Notes: Simulations of the deep and aggregate habits models use the same parameter values. The numbers correspond to the
percentage of the unconditional variances of ĉt, π̂t, and R̂t attributed to each shock.
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Table 4

Parameter Estimates (1965:Q3 - 2012:Q1)

Model Parameter Nested Deep Aggregate

Parameter Description Habits Habits Habits

σa preference shock 0.2795
(0.0542)

0.1181
(0.0181)

0.0120
(0.0073)

σz technology shock 0.0119
(0.0032)

0.0172
(0.0096)

0.0316
(0.0140)

σr policy shock 0.0017
(0.0001)

0.0017
(0.0001)

0.0031
(0.0006)

ρa AR preference shock −0.3007
(0.0926)

0.4919
(0.0748)

0.9651
(0.0182)

ρz AR technology shock 0.9273
(0.0345)

0.8866
(0.0663)

0.9956
(0.0060)

ρr AR policy shock 0.2488
(0.0756)

0.2143
(0.0726)

0.6626
(0.0503)

θr interest rate smoothing 0.8790
(0.0243)

0.8911
(0.0243)

0.3062
(0.1166)

θπ inflation response 1.3909
(0.3014)

1.3251
(0.3895)

1.1683
(0.1436)

θy output response 0.0513
(0.0419)

0.0823
(0.0495)

−0.0245
(0.0164)

ba aggregate habit 0.6080
(0.0543)

0 0.7865
(0.0861)

bd deep habit 0.9400
(0.0079)

0.9390
(0.0090)

0

χ Frisch elasticity 1.6564
(0.6672)

0.8568
(0.7132)

0.6279
(0.4068)

ϱ lagged inflation 6.9e-8
(0.0884)

3.8e-8
(0.0938)

1.2e-7
(0.0463)

α price adjustment cost 59.3778 59.3778 59.3778

β discount factor 0.9965 0.9965 0.9965

η substitution elasticity 6 6 6

µ markup 1.2133
(0.0019)

1.2130
(0.0021)

1.2000
(0.0000)

lnL log likelihood 2385.8152 2381.9230 2355.2368

p-value likelihood ratio test − 0.0053 0.0000

Notes: The table reports maximum-likelihood estimates of the nested model, the deep habits model (ba = 0), and the aggregate
habits model (bd = 0). Standard errors are in parentheses. Italicized numbers denote values that are imposed prior to estimation.
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Fig. 1. The autocorrelation function for consumption ĉt, inflation π̂t, and the interest rate R̂t is drawn for the US data (solid
line), the estimated deep habits model (dashed line), and an aggregate habits model (dotted line) that uses the same parameter
values. Correlations for the US data are obtained from a VAR(4), and the shaded areas correspond to 90% confidence bands.
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Fig. 2. Impulse responses to a preference shock are drawn for the estimated deep habits model (solid line) and an aggregate
habits model (dotted line) that uses the same parameter values. Inflation and the nominal interest rate are measured in
annualized percentage points. All other variables are expressed as percent deviations from the steady state.
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Fig. 3. Impulse responses to a technology shock are drawn for the estimated deep habits model (solid line) and an aggregate
habits model (dotted line) that uses the same parameter values. Inflation and the nominal interest rate are measured in
annualized percentage points. All other variables are expressed as percent deviations from the steady state.
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