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1 Introduction

Habit formation in consumption is a prominent feature of modern new-Keynesian business

cycle models (e.g., Fuhrer, 2000; Christiano, Eichenbaum, and Evans, 2005; Smets and

Wouters, 2007). A standard assumption in this class of models is that households derive

utility by consuming an aggregate good that is comprised of numerous differentiated prod-

ucts. A basic question then is whether habits develop at the level of the aggregate good or

at the level of individual good varieties. Until recently this literature has only considered

cases where agents become addicted to the overall consumption bundle despite evidence

suggesting that shoppers form habits over product categories and even specific brands (e.g.,

Chintagunta, Kyriazidou, and Perktold, 2001). Motivated by these findings, Ravn, Schmitt-

Grohé, and Uribe (2006) propose a “deep habits” model in which habitual consumption

develops exclusively on a good-by-good basis. In such an environment the demand func-

tion for each product will depend on past sales, causing equilibrium mark-ups of price over

marginal cost to be time-varying and to move countercyclically with output. The authors go

on to show that by inducing countercyclical mark-up behavior, deep habits can account for

the observed procyclical responses of both consumption and real wages to various demand

shocks. In contrast, a traditional habit-persistence model fails to capture this dynamic.

The comparisons between deep and aggregate habit formation made in Ravn et al. (2006)

take place in an economy with purely flexible product prices. As a result, the model is limited

in its ability to match the correlations among nominal and real variables that define postwar

US business cycles. New-Keynesian models, on the other hand, are better suited to this task

(e.g., Ireland, 2003). A relevant question then is whether incorporating deep habits into

these models could improve their fit with the data when compared to standard versions that

assume habits thrive only at the composite good level. I try to answer that question here

by estimating a small-scale DSGE model with sticky product prices, which I then use as a

laboratory for testing the empirical implications of the two habit concepts described above.

The paper begins by presenting a model whose preference structure nests both habit types

as special cases. The advantage of employing a nested utility function is that it enables one

to consider cases in which only the composite good is habit forming, only individual goods

are habit forming, both are addictive with possibly different habit intensities, or neither.

Accommodating all of these arrangements during the course of estimation makes it easier to

infer from the data which mode of habit persistence is the more empirically compelling.

Three versions of the model are estimated using maximum likelihood. One leaves the util-

ity parameters unconstrained, allowing the data to ascertain the strength of habit formation
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at both levels. The second permits deep habit formation but sets aggregate habit intensity

equal to zero. The third restricts deep habit intensity to zero while leaving the aggregate

parameter free. Likelihood ratio tests are used to compare the fit of the constrained mod-

els to an unrestricted alternative that allows both habit types to coexist. Estimates reveal

that the data favor a model with substantial persistence at the product level along with a

modest amount at the composite good level. When examined side-by-side, however, it is

clear that deep habits are better at explaining the broad correlations embodied by log likeli-

hood. Indeed, exclusion restrictions on aggregate habits are not easily rejected at standard

significance levels but are rejected with high confidence when imposed on deep habits.

Likelihood comparisons, while useful for assessing fit, are uninformative about the specific

features of the data best captured by deep habits. Further complicating the analysis is the

fact that estimates change from one model to the next, making it difficult to distinguish the

effects of habit formation from the effects of changes in parameter values. To isolate the role

of the habit mechanism from these other elements, I compare simulations of the restricted

model containing only deep habits to those from an identically-parameterized model with

deep habits replaced by aggregate habits. Simulations reveal that deep habits are superior

because they impart greater persistence on inflation. Correlations between current and

lagged inflation, for example, decay more slowly when habits are deeply rooted and are

closer to the sample correlations. This dynamic is also reflected in the impulse response

functions, which show inflation reacting more sluggishly to demand and supply shocks.

This paper adds to a literature that incorporates deep habits into sticky-price models of

the business cycle. Using GMM, Lubik and Teo (2013) estimate a new-Keynesian Phillips

curve derived from a model with deep habit preferences. One drawback of single-equation es-

timation, however, is that it does not account for all of the general equilibrium restrictions on

the joint dynamics of the endogenous variables. By contrast, maximum-likelihood imposes

all of them by estimating simultaneously the full system of equilibrium difference equations.

In comparing deep and aggregate habit formation, a systems-based approach is useful be-

cause the two specifications have different testable implications for the co-movement of the

endogenous variables. Despite these methodological differences, it is encouraging that the

studies report common findings, notably regarding estimates of the deep habit parameter,

improvements in fit, and lagged indexation as a trivial source of inflation persistence.

Ravn, Schmitt-Grohé, Uribe, and Uuskula (2010) utilize a complete model for estimation.

A key difference from this paper is that parameters are chosen by minimizing a weighted dis-

crepancy between the responses to a monetary shock implied by the model and the empirical
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ones taken from a VAR. Statistical inference is thus based on limited information contained

in the response functions rather than full information provided by the likelihood function.

2 The Model

The economy is inhabited by identical households and a continuum of imperfectly competitive

firms that produce differentiated goods and face costs of changing prices.

2.1 Households

Households are indexed by j ∈ [0, 1]. Each household j consumes differentiated goods cj,t(i),

with varieties indexed by i ∈ [0, 1], and supplies labor hj,t. Following Ravn et al. (2006),

preferences feature external habit formation on a good-by-good basis. This so-called “deep

habits” specification assumes that period utility depends on a composite good xj,t given by

xj,t =

[∫ 1

0

(
cj,t(i)− bdct−1(i)

)1−1/η
di

]1/(1−1/η)

, (1)

where ct−1(i) ≡
∫ 1

0
cj,t−1(i)dj denotes the population mean consumption of good i at date

t − 1 and η > 1 is the substitution elasticity across (habit-adjusted) varieties. Parameter

bd ∈ [0, 1) measures the intensity of habit formation in consumption of each variety.

At the start of date t, household j minimizes
∫ 1

0
Pt(i)cj,t(i)di subject to the aggregation

constraint (1). Pt(i) is the nominal price of good i. In minimizing consumption costs, the

household takes ct−1(i) as given. First-order conditions imply demand functions of the form

cj,t(i) =

(
Pt(i)

Pt

)−η

xj,t + bdct−1(i),

where Pt ≡
[∫ 1

0
Pt(i)

1−ηdi
]1/(1−η)

is the unit price of the final good. Demand for good i

has the property of being negatively related to the relative price Pt(i)/Pt and positively

related to consumption of the final good xj,t. Note, however, that deep habits give rise to an

additional component that depends positively on past aggregate sales ct−1(i) when bd > 0.

Household j maximizes the expected lifetime utility function

Vj,0 = E0

∞∑
t=0

βtat

[
log(xj,t − baxt−1)−

h1+χ
j,t

1 + χ

]
, (2)
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where E0 is a date-0 conditional expectations operator, β ∈ (0, 1) is a subjective discount

factor, and 1/χ > 0 is the Frisch elasticity of labor supply. Preference shocks at follow the

autoregressive process log at = ρa log at−1 + εa,t, with ρa ∈ (−1, 1) and εa,t ∼ i.i.d. N(0, σ2
a).

The preferences in (2) permit households to form habits directly over the composite

good xj,t. Here household j values quasi differences between xj,t and xt−1 ≡
∫ 1

0
xj,t−1dj, the

population average consumption of the composite good at date t−1. Following Abel (1990),

xt−1 is viewed as an external reference in that its evolution is taken as exogenous. Parameter

ba ∈ [0, 1) measures the strength of external habits in consumption of the final good.1

The appeal of (2) is that it nests both forms of habit persistence as special cases. When

ba = 0 preferences become time separable in xj,t, and the model collapses to a strictly deep

habits specification. Alternatively, setting bd = 0 causes the deep habits mechanism in (1)

to vanish. In this case habits develop only at the level of the final good.2 Henceforth, I refer

to this restricted version as the “aggregate habits” specification.

In each period t ≥ 0, household j supplies labor to firms at a competitive nominal wage

rate Wt. It also has access to riskless one-period bonds Bj,t that pay a gross nominal interest

rate Rt at date t+1. Together with bond wealth and labor income, household j receives an

aliquot share of profits from ownership of firms, Φj,t. The flow budget constraint is

Ptxj,t +ϖt +Bj,t ≤ Rt−1Bj,t−1 +Wthj,t + Φj,t, (3)

where ϖt ≡ bd
∫ 1

0
Pt(i)ct−1(i)di.

3 Sequences {xj,t, hj,t, Bj,t}∞t=0 are chosen to maximize Vj,0

subject to (3) and a borrowing limit, taking as given {Pt, ϖt, Rt,Wt,Φj,t}∞t=0 as well as the

initial composite good x−1 and bond holdings Bj,−1. The first-order conditions imply

hχ
j,t (xj,t − baxt−1) = wt (4)

and

1 = βEt
Rt

πt+1

at+1 (xj,t − baxt−1)

at (xj,t+1 − baxt)
, (5)

where wt ≡ Wt/Pt is the real wage and πt ≡ Pt/Pt−1 is the gross inflation rate.

2.2 Firms

Consumption goods are produced by monopolistically competitive firms. Variety i is man-

ufactured from labor according to yt(i) = ztht(i), where yt(i) is the output of firm i and

ht(i) is its labor input. Aggregate technology shocks zt follow an autoregressive process
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log zt = (1− ρz) log z + ρz log zt−1 + εz,t, with ρz ∈ [0, 1), z > 0, and εz,t ∼ i.i.d. N(0, σ2
z).

Firm i selects its price Pt(i) to maximize the present discounted value of nominal profits.

Constraining the price-setting decision is the market demand curve

ct(i) =

(
Pt(i)

Pt

)−η

xt + bdct−1(i), (6)

obtained by integrating cj,t(i) over all j ∈ [0, 1] households. It is understood that firm i will

meet this demand at the posted price, implying ztht(i) ≥ ct(i) for all t ≥ 0. Following Rotem-

berg (1982), firms also face costs of adjusting prices of the form (α/2) (Pt(i)/πPt−1(i)− 1)2 yt.

These are expressed in units of aggregate output, yt ≡
∫ 1

0
yt(i)di, and are incurred whenever

growth in Pt(i) deviates from the long-run mean inflation rate π.

The Lagrangian of firm i’s problem can be written as

L = E0

∞∑
t=0

q0,t

{
Pt(i)ct(i)−Wtht(i)− Pt

α

2

(
Pt(i)

πPt−1(i)
− 1

)2

yt

+Ptγt(i) [ztht(i)− ct(i)] + Ptνt(i)

[(
Pt(i)

Pt

)−η

xt + bdct−1(i)− ct(i)

]}
,

where q0,t is a stochastic discount factor.4 In maximizing L, firm i takes c−1(i), P−1(i), and

{q0,t,Wt, Pt, yt, zt, xt}∞t=0 as given. First-order conditions for {ht(i), ct(i), Pt(i)}∞t=0 are

wt = γt(i)zt, (7)

νt(i) =
Pt(i)

Pt

− γt(i) + bdEt
q0,t+1

q0,t
πt+1νt+1(i), (8)

ct(i) = νt(i)η

(
Pt(i)

Pt

)−η−1

xt + α

(
Pt(i)

πPt−1(i)
− 1

)
Ptyt

πPt−1(i)

− αEt
q0,t+1

q0,t
πt+1

(
Pt+1(i)

πPt(i)
− 1

)
Pt+1(i)Ptyt+1

πPt(i)2
. (9)

The multiplier γt(i) in (7) corresponds to real marginal cost. The multiplier νt(i) in (8)

is the shadow value of selling an extra unit of good i in the current period. It is the sum of

two parts: the short-run profit from the sale, Pt(i)/Pt−γt(i), and the discounted value of all

future profits that the sale is expected to generate, bdEt
q0,t+1

q0,t
πt+1νt+1(i).

5 Eq. (9) describes

conditions that are satisfied by the firm’s optimal price.
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2.3 Monetary Policy

Following Ravn et al. (2010), the monetary authority sets Rt according to a Taylor rule

log(Rt/R) = θr log(Rt−1/R) + (1− θr) [θπ log(πt/π) + θy log(yt/y)] + εr,t,

where θπ and θy capture the long-run policy response to fluctuations in gross inflation and

aggregate output. Parameter θr ∈ [0, 1) measures the degree of interest rate smoothing.6 Pos-

itive constants R, π, and y denote the steady-state values of the nominal interest rate, infla-

tion, and output. The purely random element of policy is summarized by εr,t ∼ i.i.d.N(0, σ2
r).

2.4 Competitive Equilibrium

I consider a symmetric competitive equilibrium in which households make identical con-

sumption and labor decisions and all firms charge the same price.7

Equilibrium requires that both labor and product markets clear at prevailing prices. This

is accomplished in the labor market by imposing∫ 1

0

hj,tdj =

∫ 1

0

ht(i)di ≡ ht

for t ≥ 0. In product markets, output of the final good must be allocated to total consump-

tion expenditure and to resource costs originating from the adjustment of prices:

yt = ct +
α

2

(πt

π
− 1

)2

yt.

3 Econometric Strategy

I log-linearize the equilibrium conditions around the deterministic steady state of the model

and compute a rational expectations equilibrium using methods developed by Klein (2000).

The solution has a state-space representation given by

st = Πst−1 +Ωεt, (10)

ft = Ust, (11)

where st contains exogenous and endogenous state variables, εt holds the guassian innova-

tions, and ft contains the forward-looking variables. Elements of Π, Ω, and U are functions
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of the structural parameters governing preferences and technologies.

Models of the form (10) and (11) can be estimated via maximum likelihood using the

Kalman filter (e.g., Harvey, 1989). With data on the observables, the filter compiles a history

{εt}Tt=1 necessary for calculating sample log likelihood. Since these innovations depend on Π,

Ω, and U, structural parameters may be estimated by maximizing the likelihood function.

I estimate the model with US data on consumption, inflation, and a nominal interest rate.

The sample is 1965:Q3 to 2012:Q1. Consumption is real personal consumption expenditures

(PCE) divided by the noninstitutional population. Inflation is the first-differenced log of the

PCE price index. The interest rate is the log of the gross yield on 3-month Treasury bills.8

4 Estimation Results

Three parameters are held fixed prior to estimation. The discount factor β is set to 0.9965,

which equals the ratio of the sample means of inflation and the nominal interest rate. The

substitution elasticity η is set equal to 6. In the absence of deep habits (bd = 0), this value

implies an average mark-up of 20 percent and is consistent with Basu and Fernald (1997).

When deep habits are present, the mark-up is given by µ ≡
[
1− (1/η)

(
1−βbd

1−bd

)]−1

and

depends on both η and bd. Estimates of bd discussed below put µ in the 21-22 percent range.

Attempts to estimate α returned values that point to extreme levels of price rigidity. As a

result, I follow Monacelli (2009) by calibrating α so that the model is consistent with a price-

change frequency of one year in a Calvo-Yun framework. Letting 1−ϕ denote the Calvo reset

probability, ϕ = 0.75 implies an average contract duration of (1 − ϕ)−1 = 4 quarters (e.g.,

Woodford, 2003). To obtain α, I set the key slope coefficient in the linearized version of (9),

(η−1)/α, equal to the Phillips curve slope in the Calvo-Yun model given by (1−ϕ)(1−βϕ)/ϕ.

This restriction implies that adjustment costs satisfy α = ϕ(η − 1)/(1− ϕ)(1− βϕ).9

Table 1 reports maximum-likelihood estimates and standard errors for the nested habits

model and the two restricted models that consider deep and aggregate habits separately.10

Looking at the nested model, estimates of ba and bd reveal that the data favor a specifi-

cation in which habits are strongest at the product level. The estimate of bd is 0.94 and is

close to the value of 0.85 reported by Lubik and Teo (2013) and Ravn et al. (2010). The

estimate of ba is only 0.61, which is near the range in Christiano et al. (2005) (0.65) and

Smets and Wouters (2007) (0.71). The standard error for bd is also an order of magnitude

smaller than the one for ba, indicating far more precision in the estimate of deep habits.11

Concerning the Taylor rule, the estimate of θr is 0.90, reflecting the Federal Reserve’s
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penchant for adjusting the interest rate gradually in response to shocks. The estimate of θπ

is 1.54, ensuring that policy is stabilizing and satisfies the Taylor principle over the sample

period. By contrast, policy does not appear to have reacted strongly to output fluctuations.

The estimate of θy is 0.07 and not significantly different from zero.

Turning to the shocks, estimates of σa, σz, and σr indicate that innovations to preference

shocks are more volatile than technology and monetary policy innovations. Moreover, esti-

mates of ρa (−0.30) and ρz (0.93) suggest that while technology shocks are highly persistent,

preference shocks are not persistent and may even be negatively autocorrelated.12,13

Estimates of the deep habits model are obtained by restricting ba = 0. The contribution

of aggregate habits can be assessed by comparing these results to the nested model. Fixing

ba = 0 evidently has little effect on most of the parameters, notably the degree of deep habits

bd, which is nearly unchanged at 0.94. Obvious exceptions are the persistence and volatility

of preference shocks. The estimate of σa falls by over half (0.12) while that of ρa becomes

significantly positive (0.50). Omitting aggregate habits also lowers maximized log likelihood

from 2380.41 to 2377.65. The p-value for the likelihood ratio statistic in this case is 0.0189,

implying that the exclusion restriction is rejected at the 5% level but not the 1% level.

To evaluate the contribution of deep habits, I report estimates from the aggregate habits

model obtained by restricting bd = 0. Eliminating deep habits does not greatly affect es-

timates of ba (0.65), but it has a big impact on how one interprets the preference shocks.

Estimates of ρa (0.95) and σa (0.02) suggest that they are highly persistent but not sig-

nificantly more volatile than technology shocks. Along with these changes, maximized log

likelihood drops all the way to 2343.57. The p-value for the likelihood ratio test of bd = 0 is

less than 0.0001. Thus compared to previous results concerning aggregate habit formation,

the model suffers a greater loss of explanatory power when deep habits are excluded.

5 Examining the Role of Deep Habits

Although likelihood analysis points to deep habits as the more empirically compelling, it

is unclear which aspects of the data are driving the improvement in fit. To answer this

question and gain insight into the role of habits per se, I compare simulations of the deep

habits model to those from an identically-parameterized aggregate habits model.14
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5.1 Volatilities and Correlations

Table 2 and Fig. 1 report standard deviations and autocorrelations of detrended consump-

tion, inflation, and the interest rate from the two models described above. To see which one

has superior business cycle properties, I also report the corresponding set of moments from

the US data. These moments are computed from an unrestricted VAR(4).15

The deep habits model does a better job of accounting for the joint volatility of ĉt, π̂t, and

R̂t. For each variable the model-implied standard deviation is well-within the 90% confidence

interval around the VAR-based estimate, so differences between the two are insignificant at

the 10% level. This is not true of the aggregate habits model, which tends to understate

consumption volatility but greatly overstate inflation volatility.

Fig. 1 reveals that deep habits are also better at replicating some of the key dynamic

interactions reflected in the autocorrelation functions. Nowhere is this more obvious than in

the own correlation of inflation. The VAR results show inflation to be highly persistent with

a correlation “half-life” of about seven quarters. Under deep habits the correlation between

inflation and its own lag still exceeds 0.50 after one year and stays positive for up to three

years. By contrast, there is almost no inflation persistence under aggregate habits. The

correlation half-life is less than one quarter and turns slightly negative after just one year.16

5.2 Impulse Response Analysis

What factors drive the persistence and volatility of inflation observed under deep habits?

To shed light on the key mechanisms, I now report impulse responses to a one-standard-

deviation increase in the preference shock at and the technology shock zt (both in logs).17

Consider the effects of a preference shock in Fig. 2. A positive innovation to at lifts

consumption in both models because it increases the marginal utility of habit-adjusted con-

sumption. Meanwhile, the shock also boosts labor demand as firms try to satisfy the tempo-

rary consumption boom. This raises work hours and the real wage along a fixed labor supply

curve since preference shocks do not affect households’ marginal rate of substitution in (4).

With productivity zt unchanged, the wage increase implies an equal percentage increase in

real marginal cost given by the Lagrange multiplier γt in (7).

The adjustment paths described so far are similar for the two habit specifications. Where

they depart is in the response of the shadow value of sales. Recall that this quantity,

represented by the multiplier νt on the consumer demand function, measures the value to

the firm of selling an extra unit in the current period. According to the figure, it falls sharply
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on impact under aggregate habits–by about 53%–compared to only 5% under deep habits.

The manner in which consumption habits affect the shadow value of sales can be seen

more clearly by expressing νt in terms of the present value of expected future per-unit profits.

Iterating (8) forward and imposing the various symmetric equilibrium conditions yields

νt = Et

∞∑
j=0

(
βbd

)j λt+j

λt

(1− γt+j) , (12)

where λt is the marginal utility of habit-adjusted consumption. Note that when bd is close

to one, νt depends heavily on expectations of per-unit profits in the distant future. Because

the shocks are transitory, long-run profit forecasts do not deviate much from the steady

state. Consequently, even large changes in marginal cost over the short run have only a

small percentage effect on the entire present value expression. When bd = 0, as is true of the

aggregate habits model, (12) collapses to νt = 1 − γt. The value of selling an extra unit in

this case is just current marginal profit since the sale is not expected to induce any future

sales. Large shifts in marginal cost will therefore have a comparable percentage effect on νt.

Returning to Fig. 1, movements in the value of sales determine how firms react to the

rise in marginal cost. With aggregate habits, the big drop in νt motivates firms to pass cost

increases on to consumers via higher prices. As a result, annualized inflation surges to 9.4%

and recedes quickly as the effects on marginal cost subside. With deep habits, the small

decline in νt encourages firms to shield customers from higher costs by keeping prices low.

In this case inflation falls in the impact period but rises gently to 4.3% three quarters later.

The reason why the shadow value of sales is more rigid and thus inflation less volatile

and more persistent under deep habits is partly due to the intertemporal effect identified

by Ravn et al. (2006). This effect emerges because firms recognize that current sales affect

future consumption demand if bd > 0. When faced with rising demand and cost conditions,

firms have a powerful incentive to broaden their market share by holding down prices. The

resulting growth in the habit stock enables firms to smooth out price increases over several

quarters rather than front-load all of them as seen in the aggregate habits model.

The other channel through which deep habits affect inflation dynamics is the price-

elasticity effect. As explained by Ravn et al. (2006), shocks that lift aggregate spending

increase the relative size of the price-elastic component of the firm’s demand schedule (6)

when bd > 0. This raises the short-run price elasticity of demand, which in a symmetric

equilibrium can be expressed as ϵt ≡ η(1−bdct−1/ct).
18 Following an expansionary preference

shock, firms will therefore seek to limit any price increase in an effort to preserve market
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share. The same incentives do not exist in the aggregate habits model. When bd = 0 the

demand elasticity is constant and equal to η regardless of the spending level. Fig. 1 affirms

this result. Under deep habits ϵt climbs by 10.7% on impact. This drives mark-ups even

lower and bolsters the inertia already present in inflation from the intertemporal effect.

The joint impact that these two channels have on the inflation process is also evident in

the optimal price-setting condition (9) when expressed in log-linear form as

π̂t = βEtπ̂t+1 + (1/α) (ĉt − ν̂t − x̂t) . (13)

Solving (13) forward and recognizing that x̂t =
(
ĉt − bdĉt−1

)
/(1− bd) gives

π̂t = −(1/α)Et

∞∑
j=0

βj

ν̂t+j +
(
bd/(1− bd)

)
(ĉt+j − ĉt+j−1)︸ ︷︷ ︸

ϵ̂t+j

 , (14)

showing inflation to be a function of the future paths of consumption growth and the shadow

value of sales. As described above, the intertemporal effect is best captured by variation

in νt and the price-elasticity effect by changes in the demand elasticity ϵt. A log-linear

approximation of the demand elasticity yields ϵ̂t =
(
bd/(1− bd)

)
(ĉt− ĉt−1), which is precisely

the second term in the forward solution for π̂t. This way of dissecting inflation clarifies how

both mechanisms impart inertia. Following a preference shock, intertemporal effects choke

off inflation by preventing a collapse in the shadow value of sales. Price-elasticity effects

stamp out inflation to the extent that consumption growth in (14) offsets the declines in νt.

Fig. 3 displays the responses to a technology shock. A positive innovation to zt relaxes

the lifetime budget constraint which boosts consumption through a wealth effect channel.

Meanwhile, the real interest rate (not shown) temporarily rises because monetary policy

reduces the nominal rate by less than the fall in expected inflation. Higher real rates, in

turn, mitigate some of the expansionary effects on consumption. Facing only modest growth

in consumption, the rise in productivity enables firms to roll back their demand for labor,

pushing hours of work, wages and marginal cost lower in periods immediately after the shock.

For reasons apparent in (12), the decline in marginal cost has disparate effects on the

shadow value of sales in the two models. According to the figure, the impact-period rise in νt

under aggregate habits is 12.7% compared to 2.5% under deep habits. It follows that firms are

not as eager to slash prices when habits are deeply rooted. Indeed, inflation in this case only

drops to 2.3% (down from 3.9%) but plunges to 1.1% under aggregate habits. Thus contrary
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to a preference shock, intertemporal effects help to discourage the large price cuts (instead

of the price hikes) that would otherwise follow an increase in total factor productivity.

Price elasticity effects also influence the path of inflation. Unlike Fig. 2, however, these

tend to undermine rather than reinforce the intertemporal effects. Because technology shocks

gradually increase consumption, demand elasticities under deep habits rise and then fall in a

hump-shaped pattern. During high-elasticity periods, firms have an incentive to lower prices

in an effort to capture market share. This intensifies the downward pressure on inflation and

counteracts the upward pull being exerted by the intertemporal effects. The result can also

be seen in (14). Technology shocks, because they increase νt and ϵt, amplify the disinflation

experienced under deep habits. Yet despite the extra push given by the price-elasticity effect

in this case, the intertemporal effect is evidently strong enough to prevent inflation from

falling as much as it would if deep habits were absent from the model altogether.

6 Additional Sources of Persistence

The gains in fit observed under deep habits come from its ability to generate greater inflation

persistence. One could conclude then that the aggregate habits model is deficient simply

because it has no internal persistence mechanisms other than serial correlation inherited

from the shocks. But this raises the possibility that the case for deep habits might not be as

compelling if evaluated in the context of a richer model with multiple sources of persistence.

To explore this possibility, I modify the original setup by including two ad hoc elements

capable of generating persistence irrespective of deep habits. The first one borrows from

Ireland (2007) by placing a backward-looking term in the adjustment cost function. Firms

now face adjustment costs of the form (α/2)
[
Pt(i)/

(
(πϱ

t−1π
1−ϱPt−1(i)

)
− 1

]2
yt, where ϱ ∈

[0, 1] measures the degree to which lagged inflation serves as a reference for price setting. If

ϱ = 1 firms incur costs only to the extent that growth in Pt(i) deviates from πt−1. If ϱ = 0

adjustment costs reduce to the benchmark case where steady-state inflation is the reference

value. A log-linear approximation of the optimal pricing condition yields

(π̂t − ϱπ̂t−1) = βEt (π̂t+1 − ϱπ̂t) + (1/α) (ĉt − ν̂t − x̂t) . (15)

Inflation now has two sources of persistence. One is inherited from the forcing variable,

ĉt−ν̂t−x̂t, and the other is the “built-in” persistence imparted by lagged inflation when ϱ > 0.

The second modification allows for serial correlation in the policy shock by modeling εr,t as

an AR(1) process with autoregressive coefficient ρr ∈ [0, 1). Due to sticky prices, greater
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persistence in the nominal interest rate translates into greater persistence in consumption.

This in turn strengthens inflation persistence via the forcing process in (15).

Table 3 reports new estimates of the nested habits model along with the two restricted

models. The results should help determine whether the original model falsely attributes

inflation persistence to deep habits when some of that persistence is actually due to backward-

looking components in the pricing equation or serial correlation in the policy shocks.

Changes made in this section have little effect on inferences of the nested model or the

deep habits model. None of the estimates are significantly different from their counterparts

in Table 1. I also find no evidence of lagged inflation in (15). Estimates of ϱ lie up against

the zero bound, so the data prefer to have persistence derive from deep habits rather than

backward-looking frictions in price setting. There is some evidence of serial correlation in

the policy shock. Estimates of ρr span 0.21 to 0.25 and are significantly different from zero.19

Estimates of the aggregate habits model are not as robust. Setting bd = 0 drives up the

estimate of ρr to 0.66 but pushes down θr and θπ to 0.31 and 1.17. Inferences about habit

formation are also affected. The estimate of ba is 0.79, almost 22% higher than the estimate

in Table 1. Despite these changes, the aggregate habits model still does not attribute any

persistence to lagged inflation. The estimate of ϱ is near zero and statistically insignificant.

7 Conclusion

This paper estimates a new-Keynesian model with habit formation. Central to the model is a

utility function that nests aggregate and deep consumption habits as special cases. Maximum

likelihood reveals that the data prefer an arrangement in which habits over differentiated

products are stronger than habits over the aggregate finished good. Although separate

likelihood ratio tests reject the hypothesis that either type should be excluded (at the 5%

level), results show that the slump in model fit is far greater when deep habits are missing.

I trace this to the ability of deep habits to shape the dynamics of inflation in a manner

consistent with US data. Product-level habits motivate firms to smooth out price changes

over time. This feature derives from well-known intertemporal and price-elasticity effects that

coalesce with nominal frictions to produce a model capable of imparting substantial inertia

on inflation. Simulations indicate that deep habits are critical for matching the volatility and

persistence observed in the sample. The same behavior is evident in the impulse responses,

which show inflation reacting sluggishly to preference and technology shocks when deep

habits are preserved but swiftly and less persistent when replaced by aggregate habits.
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Notes
1This specification, often referred to as “catching up with the Joneses,” is different from internal habit

formation in which households value consumption relative to their own past consumption. Dennis (2009)
studies the empirical consequences of internal vs. external habit formation from a new-Keynesian perspective.

2Setting bd = 0 implies xj,t =
[∫ 1

0
cj,t(i)

1−1/ηdi
]1/(1−1/η)

, which is just a standard Dixit-Stiglitz aggre-

gator commonly used in models with imperfectly competitive markets.
3Household j’s efforts to minimize the period-by-period cost of assembling each unit of xj,t implies that,

at the optimum,
∫ 1

0
Pt(i)cj,t(i)di = Ptxj,t + bd

∫ 1

0
Pt(i)ct−1(i)di.

4In equilibrium the stochastic discount factor satisfies q0,tPt = βtat/(xt − baxt−1).
5Due to habit formation, selling a unit of good i in the current period raises sales by bd units in the

following period, the present discounted value of which equals bdEt
q0,t+1

q0,t
πt+1νt+1(i).

6The policy coefficients {θr, θπ, θy} are jointly restricted to guarantee a locally unique rational expec-
tations equilibrium. See Zubairy (2013) for a discussion of how deep habits modify the local determinacy
conditions of an otherwise standard new-Keynesian model.

7Subscript j and function argument i can therefore be dropped from variables appearing in the optimality
conditions.

8I de-mean the inflation and interest rate series prior to estimation. Consumption data exhibits a secular
trend, so I regress the log of per capita consumption against a constant and a linear time trend. Least
squares residuals are used for estimation.

9In a separate appendix to the paper (available at http://mycba.ua.edu/∼gegivens/research) I examine
how robust the parameter estimates are to setting (1−ϕ)−1 = 3 quarters. Also reported in the appendix are
estimates of the deep habits model for varying degrees of price fixity ranging from 4 months to 12 months.

10Standard errors correspond to the square roots of the diagonals of the inverse Hessian matrix.
11The appendix contains a brief discussion of identification issues concerning estimates of ba and bd.
12The chi-square statistic from a likelihood ratio test of the hypothesis ρa = 0 has a p-value of 0.0084.
13In the appendix I provide some intuition for why preference shocks in the nested habits model lack

persistence but are highly volatile, which is somewhat atypical of most empirical DSGE models. I also
re-estimate the nested habits model under the restriction ρa ∈ [0, 1) and comment briefly on the findings.

14The analysis here compares simulations of the deep habits model using the estimates in the second
column of Table 1 to simulations of an aggregate habits model that uses the exact same parameter values
(e.g., bd = ba = 0.9414). Estimates of the nested habits model in the first column of Table 1 are not used.

15The appendix reports additional standard deviation and autocorrelation results for the nested and ag-
gregate habits models using the estimates that appear in the first and third columns of Table 1, respectively.

16Confidence intervals for the autocovariance functions are obtained using Monte Carlo methods as follows.
First, I take the joint distribution of the VAR coefficient estimates and the residual covariance matrix to
be asymptotically normal with mean given by the sample estimates and covariance given by the sample
covariance matrix of those estimates. Second, I draw 10,000 random vectors from this multivariate normal
distribution and compute the corresponding autocovariance functions for each draw. Third, I rank the
autocovariances for each variable pair and for each lag in descending order. The 90% confidence intervals
are bounded by the 5th and 95th percentiles of the ordered autocovariances.

17Absent here are the responses to a policy shock εr,t. Since they originate on the demand side, monetary
shocks produce dynamics that are similar to preference shocks. Moreover, Ravn et al. (2010) only consider
monetary shocks in their analysis of deep habits. Emphasizing preference and technology shocks therefore
shifts the orientation of this paper towards findings that have not received as much attention in the literature.

18The price elasticity of demand for good i is ϵt(i) ≡ − (Pt(i)/Pt)
ct(i)

∂ct(i)
∂(Pt(i)/Pt)

= η
(
ct(i)− bdct−1(i)

)
/ct(i).

19The chi-square statistic from a likelihood ratio test of the hypothesis that ρr = 0 has a p-value of 0.0010
in the nested habits model and 0.0035 in the deep habits model.

14



References

Abel, Andrew B. “Asset Prices under Habit Formation and Catching Up with the Joneses.”
The American Economic Review Papers and Proceedings, May 1990, 80(2), pp. 38-42.

Basu, Susanto and Fernald, John G. “Returns to Scale in U.S. Production: Estimates
and Implications.” Journal of Political Economy, April 1997, 105(2), pp. 249-83.

Chintagunta, Pradeep; Kyriazidou, Ekaterini and Perktold, Josef. “Panel Data
Analysis of Household Brand Choices.” Journal of Econometrics, July 2001, 103(1-2),
pp. 111-53.

Christiano, Lawrence J.; Eichenbaum, Martin and Evans, Charles L. “Nominal
Rigidities and the Dynamic Effects of a Shock to Monetary Policy.” Journal of Political
Economy, January 2005, 113(1), pp. 1-45.

Dennis, Richard. “Consumption Habits in a New Keynesian Business Cycle Model.” Jour-
nal of Money, Credit and Banking, August 2009, 41(5), pp. 1015-30.

Fuhrer, Jeffrey C. “Habit Formation in Consumption and its Implications for Monetary-
Policy Models.” The American Economic Review, June 2000, 90(3), pp. 367-90.

Harvey, Andrew C. Forecasting, Structural Time Series Models and the Kalman Filter.
Cambridge, UK: Cambridge University Press, 1989.

Ireland, Peter N. “Endogenous Money or Sticky Prices?” Journal of Monetary Economics,
November 2003, 50(8), pp. 1623-48.

. “Changes in the Federal Reserve’s Inflation Target: Causes and Consequences.”
Journal of Money, Credit and Banking, November 2007, 39(8), pp. 1851-82.

Klein, Paul. “Using the Generalized Schur Form to Solve a Multivariate Linear Ratio-
nal Expectations Model.” Journal of Economic Dynamics and Control, September 2000,
24(10), pp. 1405-23.

Lubik, Thomas A. and Teo, Wing Leong. “Deep Habits in the New Keynesian Phillips
Curve.” forthcoming in Journal of Money, Credit and Banking, 2013.

Monacelli, Tommaso. “New Keynesian Models, Durable Goods, and Collateral Con-
straints.” Journal of Monetary Economics, March 2009, 56(2), pp. 242-54.

Ravn, Morten; Schmitt-Grohé, Stephanie and Uribe, Martin. “Deep Habits.” The
Review of Economic Studies, January 2006, 73(1), pp. 195-218.

15
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Table 1

Parameter Estimates (1965:Q3 - 2012:Q1)

Model Parameter Nested Deep Aggregate

Parameter Description Habits Habits Habits

σa preference shock 0.3006
(0.0575)

0.1229
(0.0170)

0.0224
(0.0065)

σz technology shock 0.0114
(0.0026)

0.0162
(0.0059)

0.0164
(0.0034)

σr policy shock 0.0017
(0.0001)

0.0017
(0.0001)

0.0020
(0.0001)

ρa AR preference shock −0.2999
(0.0922)

0.5011
(0.0719)

0.9478
(0.0233)

ρz AR technology shock 0.9333
(0.0295)

0.8983
(0.0449)

0.9965
(0.0048)

θr interest rate smoothing 0.9026
(0.0183)

0.9073
(0.0188)

0.7956
(0.0261)

θπ inflation response 1.5406
(0.3031)

1.4814
(0.3331)

1.4687
(0.1825)

θy output response 0.0685
(0.0427)

0.0894
(0.0486)

−0.0155
(0.0131)

ba aggregate habit 0.6111
(0.0546)

0 0.6461
(0.0674)

bd deep habit 0.9438
(0.0069)

0.9414
(0.0077)

0

χ Frisch elasticity 2.0135
(0.6603)

1.0655
(0.6334)

1.5749
(0.7689)

α price adjustment cost 59.3778 59.3778 59.3778

β discount factor 0.9965 0.9965 0.9965

η substitution elasticity 6 6 6

µ markup 1.2142
(0.0019)

1.2136
(0.0019)

1.2000
(0.0000)

lnL log likelihood 2380.4089 2377.6548 2343.5735

p-value likelihood ratio test − 0.0189 0.0000

Notes: The table reports maximum-likelihood estimates of the nested model, the deep habits model (ba = 0), and the aggregate
habits model (bd = 0). Standard errors are in parentheses. Italicized numbers denote values that are imposed prior to estimation.

Table 2

Standard Deviations

Model SD(ĉt) SD(π̂t) SD(R̂t)

Deep Habits 0.0320 0.0075 0.0070

Aggregate Habits 0.0275 0.0172 0.0075

VAR(4) 0.0376 [0.0296, 0.0841] 0.0066 [0.0056, 0.0136] 0.0076 [0.0061, 0.0182]

Notes: Simulations of the deep and aggregate habits models use the same parameter values. Numbers in squared brackets
correspond to 90% confidence intervals for the standard deviations implied by an unconstrained VAR(4) on ĉt, π̂t, and R̂t.
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Table 3

Parameter Estimates (1965:Q3 - 2012:Q1)

Model Parameter Nested Deep Aggregate

Parameter Description Habits Habits Habits

σa preference shock 0.2795
(0.0542)

0.1181
(0.0181)

0.0120
(0.0073)

σz technology shock 0.0119
(0.0032)

0.0172
(0.0096)

0.0316
(0.0140)

σr policy shock 0.0017
(0.0001)

0.0017
(0.0001)

0.0031
(0.0006)

ρa AR preference shock −0.3007
(0.0926)

0.4919
(0.0748)

0.9651
(0.0182)

ρz AR technology shock 0.9273
(0.0345)

0.8866
(0.0663)

0.9956
(0.0060)

ρr AR policy shock 0.2488
(0.0756)

0.2143
(0.0726)

0.6626
(0.0503)

θr interest rate smoothing 0.8790
(0.0243)

0.8911
(0.0243)

0.3062
(0.1166)

θπ inflation response 1.3909
(0.3014)

1.3251
(0.3895)

1.1683
(0.1436)

θy output response 0.0513
(0.0419)

0.0823
(0.0495)

−0.0245
(0.0164)

ba aggregate habit 0.6080
(0.0543)

0 0.7865
(0.0861)

bd deep habit 0.9400
(0.0079)

0.9390
(0.0090)

0

χ Frisch elasticity 1.6564
(0.6672)

0.8568
(0.7132)

0.6279
(0.4068)

ϱ lagged inflation 6.9e-8
(0.0884)

3.8e-8
(0.0938)

1.2e-7
(0.0463)

α price adjustment cost 59.3778 59.3778 59.3778

β discount factor 0.9965 0.9965 0.9965

η substitution elasticity 6 6 6

µ markup 1.2133
(0.0019)

1.2130
(0.0021)

1.2000
(0.0000)

lnL log likelihood 2385.8152 2381.9230 2355.2368

p-value likelihood ratio test − 0.0053 0.0000

Notes: The table reports maximum-likelihood estimates of the nested model, the deep habits model (ba = 0), and the aggregate
habits model (bd = 0). Standard errors are in parentheses. Italicized numbers denote values that are imposed prior to estimation.
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Fig. 1. The autocorrelation function for consumption ĉt, inflation π̂t, and the interest rate R̂t is drawn for the US data (solid
line), the estimated deep habits model (dashed line), and an aggregate habits model (dotted line) that uses the same parameter
values. Correlations for the US data are obtained from a VAR(4), and the shaded areas correspond to 90% confidence bands.
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Fig. 2. Impulse responses to a preference shock are drawn for the estimated deep habits model (solid line) and an aggregate
habits model (dotted line) that uses the same parameter values. Inflation and the nominal interest rate are measured in
annualized percentage points. All other variables are expressed as percent deviations from the steady state.
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Fig. 3. Impulse responses to a technology shock are drawn for the estimated deep habits model (solid line) and an aggregate
habits model (dotted line) that uses the same parameter values. Inflation and the nominal interest rate are measured in
annualized percentage points. All other variables are expressed as percent deviations from the steady state.
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